◆快速入门

BigQuant 开始使用

BigQuant 导航

快速创建一个量化策略

  1. 注册/登录 [BigQuant](https

由jliang创建,最终由bqytqsht更新于

107-股息率策略

策略介绍

本策略是104选股策略(🌟104-选股策略)模板的具体应用。基本逻辑是股息率较高的公司能够持续支付较高的现金股息,这通常意味着这些公司拥有较为稳定和可预测的现金流。投资者通过持

由small_q创建,最终由bqyq9vwl更新于

202-本地文件上传

介绍

  • 本地上传csv文件并读取
  • 和其他数据联合使用

实现

dai处理文件

  • 生成一个csv文件作为测试,包括日期、股票代码、当日涨跌幅。
  • 使用dai直接操作csv,如果是本地csv文件则直接拖拽至资源管理器。

![](/wiki/api/attachme

由iquant创建,最终由aaronxxx更新于

151-基本面交易策略(Fundamental Trading)

基本面分析简介

我们先来看一个量化交易策略在本平台的回测曲线和回测数据,该策略在三年期的年化收益率是24.84%,最大回撤为42个点(在2024年初出现严重回撤)。总体来说,这个策略总体是一个正收益系统的策略,但在某些时间阶段出现了大幅波动甚至严重回撤现象。

![](/wiki/api/

由qxiao创建,最终由qxiao更新于

111-羊驼策略

策略介绍

  • 美国《旧金山纪事报》曾做过大猩猩选股实验,让大猩猩独写有股票代码的纸板投标,投中一个代码就意味着选中一只股票,用此方法让大猩猩挑选出5只股票。然后,用大猩猩挑选的股票组合与《华尔街日报》8位知名分析师精心计算分析挑选的5只股票相比较,在持有一段时间之后,大猩猩随机抽取购买的股票

由qxiao创建,最终由bqwg77ez更新于

数据标签用法说明

一、定义

在量化投资领域,数据是任何代码的底层架构,模型训练、策略运行都依赖于对应的数据。BigQuant 平台的模拟交易每天会基于策略所需的数据运行策略代码,最终产生下一个交易日的买卖信息。这种工作方式需要保证模拟交易运行前,其依赖的数据需要准备好。如果数据没有准备好会导致当日模拟交易运行结

由qxiao创建,最终由qxiao更新于

137-配对交易策略(Pairs Trading)

绩效截图

我们先来看一个策略回测曲线,年化12.4%,最大回撤18个点,交易不是特别频繁,但总体是一个正收益系统的策略

这就是一个配对

由qxiao创建,最终由qxiao更新于

137-配对交易策略(Pairs Trading)

绩效截图

我们先来看一个策略回测曲线,年化12.4%,最大回撤18个点,交易不是特别频繁,但总体是一个正收益系统的策略

这就是一个配对

由qxiao创建,最终由qxiao更新于

137-配对交易策略(Pairs Trading)

绩效截图

我们先来看一个策略回测曲线,年化12.4%,最大回撤18个点,交易不是特别频繁,但总体是一个正收益系统的策略

这就是一个配对

由qxiao创建,最终由qxiao更新于

AI StockRanker耍单票策略

导语

在之前的版本里,很多用户喜欢开发每日换仓、仓位集中度高的AI StockRanker策略,无需编写sql代码,因此本教程给出这样的一个策略实现,方便用户在此基础上根据自己需求调整策略。

本策略绩效

本策略年化收益74%,夏普比率2.5,最大回撤不到-8.5%,整体绩效不错

由qxiao创建,最终由bqh1frlg更新于

开发量化策略快速教程

BigTrader是宽邦科技推出的致力于为用户提供便捷、功能强大的交易引擎。

在量化研究的过程中,量化研究员(宽客)需要在历史数据里回放模拟,验证策略效果,这就是BigTrader交易引擎的应用场景。

首先,构建简单但能运行的策略

BigQuant平台回测主要使用bigtrader中in

由qxiao创建,最终由bqh4b3bk更新于

BigCharts - 量化数据可视化探索和分析

BigCharts 介绍

BigCharts是专业的金融市场和量化投资数据可视化探索与分析工具,致力于为用户提供高效、易用、可定制的数据可视化解决方案,提升用户在数据探索、分析和决策过程中的效率与准确性,成为量化投资者和金融分析师的得力助手。

快速入门

由jliang创建,最终由small_q更新于

快速入门

快速开始第一个策略

新建策略

打开 编写策略 > 点击左侧 + AIStudio 新建策略 > 点击模版 可视化线性策略 > 回车确认

![新建可视化

由jliang创建,最终由small_q更新于

复刻策略

获取策略代码

  • 知识库 知识库提供各种策略模版、Demo和交流分享
  • 宽客学院 学习课程、很多课程提供策略代码可用于复刻(fork、克隆、clone)

由jliang创建,最终由jliang更新于

耍单票策略——一字涨停取消卖出

前言

在上一个教程中,我们讲解了如何开发一个AI StockRanker耍单票策略,今天我们在这个策略上做一个细节的调整:一字涨停取消卖出。本文的目的是做成一个教程示例,让大家了解如何在回测引擎里通过日期索引得到当天的因子值。

正文

因为持仓里的票如果是一字涨停,那么继续拿住也说得

由qxiao创建,最终由qxiao更新于

模拟交易方法

模拟交易功能是BigQuant特有的量化服务,可以根据用户的策略每日为用户通过手机,email等途径推送信号。

在进行模拟交易信号接收之前需要确保以下几点。


1.账户更新余额充足(如更新数据需要大于1C的资源)

2.已经有一个成功回测的策略。


具体模拟交易提交步骤如下

1.完

由qxiao创建,最终由small_q更新于

DataSource—通用数据类型

DataSource

DataSource是bigmodule原生支持的一种泛用数据类型,在底层实现了许多优化机制,以确保数据准确、安全、便捷地传输和使用是。

\

导入DataSource

DataSource相关的方法和属性,定义在库 dai 中,通过以下代

由small_q创建,最终由small_q更新于

133-可转债双低策略

回测绩效

\

定义

可转债全称为可转换债券,指债券持有人可按照发行时约定的价格将债券转换成公司的普通股票的债券,如果债券持有人不

由qxiao创建,最终由small_q更新于

BigModule简介与入门

BigModule

bigmodule模块是由Python语言编写的,主要是在可视化线性策略中使用的可视化部件,可以将繁杂的代码进行封装,而只把输入和输出暴露给使用者,这样用户就无需关心模块的内部实现,而只需提供相应的数据,便可以获得想要的结果。

由此一来,大大降低

由small_q创建,最终由small_q更新于

菲阿里四价策略-期货分钟_new

策略介绍

菲阿里四价指的是:昨日高点、昨日低点、昨天收盘、今天开盘四个价格。 菲阿里四价上下轨的计算非常简单。昨日高点为上轨,昨日低点为下轨。当价格突破上轨时,买入开仓;当价格突破下轨时,卖出开仓。

策略流程

  1. 筛选条件:菲阿里四价上下轨的计算非常简单。昨日高点为上轨,昨日低

由qxiao创建,最终由qxiao更新于

150-AI选股策略

策略介绍

本策略通过选择多维度的因子,使用AI算法来预测股票的未来表现并进行排序。这里使用算法StockRanker,BigQuant 平台开发的一种先进的机器学习算法,专门用于量化选股排序学习,通过在多个因子/特征的数据上训练,旨在从大量股票中识别并排序那些未来表现可能最优异的股票。

由qxiao创建,最终由qxiao更新于

137-配对交易策略(Pairs Trading)

绩效截图

我们先来看一个策略回测曲线,年化12.4%,最大回撤18个点,交易不是特别频繁,但总体是一个正收益系统的策略

这就是一个配对

由qxiao创建,最终由qxiao更新于

分页:第1页第2页第3页第4页第5页第11页
{link}