122-潜力股策略

策略介绍

  • 101-简单动量策略 基础上,我们来实现一个更完整的选股策略模版
  • 此策略可以作为一个选股和线性策略的常用模版使用

策略流程

  1. 选股:选择基础股票池

由bqmokgou创建,最终由qxiao更新于

121-指数择时策略

策略介绍

本策略是一个指数择时策略,基本逻辑是根据市场走势选择是否交易,并调整投资组合,即利用指数特征来进行风控。

策略流程

本策略是指数择时策略的具体实现,该模型的思想如下:

  1. 股票池过滤:剔除ST、退市、停牌股、北交所
  2. 筛选条件:上市天数大于270天,收盘价小于3

由bqbcl5zr创建,最终由qxiao更新于

120-小市值积极成长策略

策略介绍

  • 101-简单动量策略 基础上,我们来实现一个更完整的选股策略模版
  • 此策略可以作为一个选股和线性策略的常用模版使用

策略流程

  1. 选股:选择基础股票池

由bqmokgou创建,最终由qxiao更新于

117a-TALIB指标选股策略

策略介绍

该策略是一个TALIB指标选股策略

买入条件是(1)今日开盘价大于昨日收盘价;(2)5日收盘价均线大于10日收盘价均线的股票

买入后,如果5日收盘价均线小于10日收盘价均线,则次日卖出。

策略流程

  1. 股票过滤:剔除ST、停牌股、北交所
  2. 筛选条件:上市天数大

由bqbcl5zr创建,最终由qxiao更新于

116-质量投资策略

策略介绍

该策略是一个质量投资策略,即基于公司质量指标选择股票

在这里,我们将质量因子(score)定义为盈利能力(Profitability) + 成长性(Growth) + 安全性(Safety)

  • 盈利能力指标由资产毛利率GPOA,ROE,ROA,资产流动资金比CFOA,毛利率G

由bqbcl5zr创建,最终由qxiao更新于

115-小市值价格优势策略

策略介绍

  • 101-简单动量策略 基础上,我们来实现一个更完整的选股策略模版
  • 此策略可以作为一个选股和线性策略的常用模版使用

策略流程

  1. 选股:选择基础股票池

由bqmokgou创建,最终由qxiao更新于

114-交易引擎中设置止盈止损与大盘风控逻辑

策略介绍

本策略主要讲解如何在策略中加入止盈止损与大盘风控逻辑

本策略就是在平台的默认可视化线性模板策略的基础上进行修改的,就是一个简单的小市值策略

  • 剔除上市小于1年的新股、剔除ST股票、按照市值排序
  • 等权持股30只、持仓5个交易日

策略实现

1. 止盈止损

由small_q创建,最终由qxiao更新于

110-低波高活跃策略

策略介绍

本策略旨在选取波动率低但活跃度高作为选股因子,观察了等权持股20只,持仓20天的策略表现。该策略的盈利逻辑基于对低波动率和高活跃度股票的选择。低波动率通常意味着股价波动较小,相对稳定,有助于降低投资风险。同时,高活跃度的股票通常具有较高的流动性和交易活跃度,有利于投资者在短

由bqbcl5zr创建,最终由qxiao更新于

108-市收率策略

策略介绍

本策略是104选股策略(🌟104-选股策略)模板的具体应用。

由于公司利润变化较大,而且依赖于会计准则、研发投入、设备更新投入等因素,难以正确反映公司的经营状况,而销售收入更加稳定,

由small_q创建,最终由qxiao更新于

🌟104-选股策略

策略介绍

  • 101-简单动量策略 基础上,我们来实现一个更完整的选股策略模版
  • 此策略可以作为一个选股和线性策略的常用模版使用

策略流程

  1. 选股:选择基础股票池 2

由jliang创建,最终由qxiao更新于

基于本地信号构建策略并展示模拟绩效

说明

本文档基于私募版https://fund.bigquant.com/介绍如何基于本地的策略信号在BigQuant平台上构建策略并展示出绩效。

流程如下:本地通过SDK把信号写入到平台表→在平台上构建策略读取表的信号交易→提交模拟→分享到策略社区。

![](/wiki/api/

由qxiao创建,最终由qxiao更新于

AIStudio python环境定制

安装python包

使用pip命令进行安装

本平台已默认配置python3.11环境可以直接使用“pip”命令进行安装,需要打开终端输入pip安装包命令

按ctrl + ` 打开终端

或随机选择一个文件右键点击“在集成终端中打开”

pip常用命

由jliang创建,最终由ydong更新于

数据任务标签

1. 数据任务输出标签

若因子任务和模拟交易任务有特定的依赖标签,请查看以下表格:

中文名 英文名(dai) 输出标签
全年交易日历 all_trading_days
交易日历 trading_days

由hxgre创建,最终由qxiao更新于

106-微盘策略

策略介绍

本文将介绍经典的微盘策略,并通过编写简单的策略示例进行回测,初步感受如何在BigQuant上实现按某个指标排序并通过一系列条件过滤的量化策略开发。

微盘策略是一种投资策略,其核心思想是选择市值较小的公司进行投资。一般来说,小市值公司的股票价格相对较低,但是具有较高的成长性和投资价

由jliang创建,最终由small_q更新于

R-Breaker日内策略-期货分钟_new

策略介绍

R-Breaker日内策略,R-Breaker是一种短线日内交易策略。

策略流程

R-Breaker是一种短线日内交易策略。根据前一个交易日的收盘价(C)、最高价(H)和最低价(L)数据通过一定方式计算出六个价位,从大到小依次为: 突破买入价、观察卖出价、反转卖出价、反转

由qxiao创建,最终由qxiao更新于

网格交易策略-期货分钟_new

策略介绍

网格交易策略

策略流程

第一步:确定价格中枢、压力位和阻力位 第二步:确定网格的数量和间隔 第三步:当价格触碰到网格线时,若高于买入价,则每上升一格卖出m手;若低于买入价,则每下跌一格买入m手。

  1. 确定价格中枢、压力位和阻力位;
  2. 确定网格的数量和间隔;

由qxiao创建,最终由qxiao更新于

303-关于如何使用XGboost训练模型固化并调用

简介

**由于深度学习中的涉及到的随机项过多,比如Dropout 以及随机种子,这样固化模型的重要之处就能够体现出来了。 如果我们没有使用固化模型,在我们的缓存丢失或者更新之后我们的模拟交易以及回测将会触发模型的重新训练,导致原有的模型发生变化。 本文将会针对这个问题提出该如何在Bi

由bqrch0cl创建,最终由small_q更新于

301-滚动训练(draft)

介绍

  • 适合专业用户
  • 在时间上滚动训练策略,跟进数据变化来迭代模型
  • 本文只是一个简单演示,我们将在后续文章里介绍使用和原理

由jliang创建,最终由qxiao更新于

135-基于筹码理论的因子构建实践


筹码理论是证券市场中的一种分析方法,主要用于研究和判断股票的持仓结构及其变化。它通过分析股票的交易数据,特别是成交量和价格,来推测市场中不同价位的持股成本分布,从而帮助投资者判断未来股价的可能走势。

以下是筹码理论的一些关键概念:

  1. 筹码分布:筹码分布是指在不同价格区间内,投资

由qxiao创建,最终由qxiao更新于

HFTrade使用文档

交易引擎介绍

HFTrade是宽邦科技推出的致力于为用户提供便捷、功能强大的高频量化交易策略编写、回测分析、模拟测试和实盘交易的工具。

支持的品种

股票、基金、期货,可转债,未来会支持期权、债券、两融

交易频率

日线、分钟、Tick、逐笔

策略编写

由small_q创建,最终由small_q更新于

134-自定义买入卖出逻辑

本文是关于交易引擎BigTrader使用的一些小技巧。虽然在之前的旧文档也介绍过,见文末附录链接。但本文有一些不一样的地方。

设置股票为等权

以前我们习惯于在初始化函数中定义股票权重,为简化交易引擎模块的代码,我们最近新增了一个仓位分配的模块,用于设置股票权重,当前提供了三种权重分配的使用

由qxiao创建,最终由qxiao更新于

分页:第1页第2页第3页第4页第5页第11页
{link}