投资组合优化

投资组合优化是从金融角度出发,通过多元化的资产配置以降低风险并寻求最大化收益的过程。它涉及对不同资产类别的深入理解和前瞻性市场分析,以确定最佳的投资组合权重。通过现代投资组合理论,如马科维茨投资组合理论(MPT),投资者可以利用资产的历史回报和波动率数据,量化不同资产间的相关性,从而构建出具有理想风险-收益平衡的投资组合。在优化过程中,还需考虑投资者的风险承受能力、投资期限和市场预期等因素。持续监控和定期调整是优化投资组合不可或缺的部分,以确保投资组合与市场环境和投资者目标保持一致。

股票等权重设置

https://bigquant.com/experimentshare/5715a53b7df741f9be882f46e44f444e

\

更新时间:2024-05-20 05:58

Python基础入门


\

更新时间:2024-05-20 02:30

用线性随机梯度下降-分类算法实现A股股票选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-20 02:15

利用机器学习对冲风险

https://bigquant.com/experimentshare/d50ee96c36f84af6ad990409294db4cb

\

更新时间:2024-05-20 02:09

从均值方差到有效前沿(代码)

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

策略案例

https://bigquant.com/experimentshare/68b5d7cfac264dbda781c1fbcc6a4880

\

更新时间:2024-05-20 02:09

对冲策略研究demo示例

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

策略案例

https://bigquant.com/experimentshare/0f3871389f5846009ba425fe066d03b2

\

更新时间:2024-05-20 01:07

基于协整的配对交易

更新

本文内容已经过期,不再适合平台最新版本,请查看如下最新内容:

https://bigquant.com/wiki/doc/5z65lqo5y2p5pw055qe6ywn5a55lqk5pit-6x1P1362eJ

策略案例

[https://bigquant.com/experimentshare/6b05d7bd134e420387acfa25c37b283f](https://bigquant.co

更新时间:2024-05-17 09:23

AI选股策略_概念过滤

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 07:50

StockRanker多因子选股策略

StockRanker多因子选股策略

https://bigquant.com/experimentshare/1b8882bded4c4127a6c6edc792af662d

\

更新时间:2024-05-17 02:33

分钟数据获取

策略案例

AIStudio3.0.0分钟数据获取请转移至:

https://bigquant.com/wiki/doc/5yig6zkf5pww5o2u6i635yw-6fK4a8ZOZx

[https://bigquant.com/experimentshare/893162aea1dc4c4f953f670293646709](https://bigquant.com/experimentshare/893162aea1dc4c4f953f6

更新时间:2024-05-17 01:13

如何结合欧奈尔的RPS指标,开发AI量化策略?

若想在AIStudio3.0.0种复现这个策略, 请空降:

https://bigquant.com/wiki/doc/rpsai-lgPnmWzLkq

问题

如何结合欧奈尔的RPS指标,开发AI量化策略?

讲解


{w:100}{w:100}{w:100}{w:100}{w:100}


1988年,欧奈尔将他的投资

更新时间:2024-05-17 01:13

筹码理论的探索-筹码分布计算的实现

新版请移至, 新的链接

https://bigquant.com/codesharev2/dd736102-e54b-4d0b-b549-16bd7703a7ac

\

更新时间:2024-05-16 06:36

【历史文档】高阶应用技巧

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-16 03:23

【历史文档】策略-策略示例分类

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 09:33

【历史文档】算子样例-策略绩效评价

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 07:51

【历史文档】因子构建与标注样例-构建大盘收益率因子

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 06:34

【历史文档】因子构建与标注样例-构建个股相对大盘收益率因子

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 06:34

【历史文档】因子高阶使用

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 06:02

【历史文档】因子基本使用

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 06:01

投资组合优化器

概述

投资组合优化是指应用概率论与数理统计、最优化方法以及线性代数等相关数学理论方法,根据既定目标收益和风险容许程度(例如最大化收益,最小化风险等),重新调整组合权重的过程,它体现了投资者的意愿和投资者所受到的约束。 投资组合管理者在设定了投资收益预期、风险预算、相关约束和风险模型之后, 依托优化器得到资产配置最优化结果。

由于不同的约束条件、目标函数,会形成不同的优化器。我们可以通过使用组合优化器,进行一段时间的回测,测试整个投资过程,不同的组合优化的方式会带来哪些细微的变化,找到更加符合自身需求的仓位分配方案。

组合优化器支持对股票进行投资优化,目前支持的目标函数如下:

更新时间:2024-05-15 02:10

策略研究


\

更新时间:2024-05-15 02:10

预计算因子


\

更新时间:2024-05-15 02:10

回测数据的深入分析

导语

本文介绍如何对一个回测结果进行深入分析。

新建一个可视化AI策略

我们先构建一个可视化AI策略,如下所示。

回测结果

回测结果一般指策略运行完毕之后输出的能够综合反映策略效果的综合图表,如下所示:

可以看出,回测结果包括收益概括、交易详情、每日持仓、

更新时间:2024-05-15 02:10

Dai读取高频因子构建一个简单的多因子策略

https://bigquant.com/codeshare/5cc967b1-9dd1-45ef-a021-3194dd0c1e4f

\

更新时间:2024-04-26 01:17

HeatMap - 热力图

接口

对于HeatMap(热力图)的 _type=”heatmap” 和 series_options:

bigcharts.Chart(
    ... 其他参数
    # 【设置图表类型】图表类型,具体参考各类型图表
    type_ = "heatmap",
    
    # 热力图中y传入的数据轴必须是两项,第一项表示的是y轴坐标轴的刻度数据第二项表示的

更新时间:2024-04-25 07:38

分页第1页第2页第3页第4页第5页第6页第7页第8页
{link}