机器学习

机器学习在金融领域的应用日益广泛,为金融业务的智能化提供了强大动力。它运用算法和模型,自动从海量数据中学习和提取有用信息,无需人工进行复杂编程。在金融风控方面,机器学习技术可帮助银行、保险公司等机构更准确地识别欺诈行为,降低信贷风险。在投资策略上,通过对历史数据的深度学习,机器能预测市场走势,为投资者提供更精准的建议。同时,机器学习还能优化客户服务,例如通过聊天机器人提供24小时在线咨询,或根据客户行为数据提供个性化金融产品推荐。总的来说,机器学习不仅提升了金融业的效率和智能化水平,也在重塑我们的金融生态。

CTA程序化交易实务研究之六:基于机器学习的订单簿高频交易策略-民生-131211

/wiki/static/upload/7e/7e6629bc-ac8d-42ad-85a0-c74ecff7229b.pdf

\

更新时间:2021-11-12 11:39

【精品】全网人工智能机器学习免费资源汇总清单

作者:Robbie Allen
编译:BigQuant

早在21世纪初,我在编写关于网络和编程的书的时候,我就发现,互联网是一个很好的资源,但是它还不完善。 那时,博客已开始流行。但是YouTube还不是很普遍,同样Quora,Twitter和播客用户也很少。十年过后,我一直在潜心钻研人工智能和机器学习,局面发生了翻天覆地的变化。互联网上现在有非常丰富的资源——当你要寻找选择你想要的资源时,你很难抉择你应该从哪里开始(和停止)!

![微信图片_20180306160704|690x277](/community/uploads/default/original/2X/5/

更新时间:2021-11-11 07:27

海通金工—基于机器学习和知识图谱的行业轮动

时间:2020 年 07 月 21 日

分析师:冯佳睿、张振岗

摘要

研究背景。我们在之前的行业轮动系列报告中挖掘了几大类的行业因子,例如,量价、宏观、情绪面、高频因子、预期基本面、历史基本面、公募基金观点等。 这些因子通常可以分为两类:行业本身的特征以及基于共同外生变量变动的行业预期收益,但这两类因子都没有考虑行业之间的关联性。因此,在本篇报告中, 我们从另一个角度研究行业收益的可预测性:相关行业的滞后收益率。

理论基础。投资者处理信息的能力有限,当某个行业出现信息或冲击时,专门从事相关行业的投资者可能也无法迅速把握冲击的全部影响。因此,信息会逐渐在各个行业间扩散,导致不同行业的

更新时间:2021-11-04 03:25

XGBoost入门

导语

本文旨在普及机器学习的使用,对于文章涉及到的模型策略不具有实盘参考意义。

Boosted Trees

XGBoost 是 “Extreme Gradient Boosting”的简称,其中“Gradient Boosting”来源于附录1.Friedman的这篇论文。本文基于 gradient boosted tree ,中文可以叫梯度提升决策树,下面简称GBDT,同时也有简称GBRT,GBM。针对gradient boosted tree的细节也可以参考附录2.这篇网页。

监督学习

XGBoost 主要是用来解决有监督学习问题,此类问题利用包含多个特征的训练

更新时间:2021-10-21 08:34

人工智能和机器学习对交易和投资的影响

作者:Michael Harris 编译:caoxiyang


导语

以下是我几个月前在欧洲做的一次演讲的摘录,当时我应邀为一群低调但净资产很高的投资者和交易员做演讲。该主题由主办方决定,是关于人工智能和机器学习对交易和投资的影响。下面的节选分为四个部分,涵盖了原始报告的50%。

人工智能和机器学习对交易的一般影响

人工智能(AI)允许用机器代替人。在20世纪80年代,人工智能研究主要集中在专家系统和模糊逻辑。随着供应算力的成本降低,使用机器解决大规模优化问题变得经济可行。由于硬件和软件方面的进步,如今人工智能专注于使用神经网络和其他学习方法来识别和分析预测变量,

更新时间:2021-10-21 06:30

BigQuant使用指南

{{use_style}}

一.导语

欢迎您来到BigQuant!

BigQuant是一个人工智能量化投资平台,平台内聚集了各类人工智能量化开发者、订阅者和学习者。

二.开发者

如果您是一位充满好奇心的学习者,在BigQuant您可以前往:

1.培训报名

与知识经验丰富的讲师团队,通过线上+线下的方式,学习AI量化入门、因子构建分析、AI量化实践、实战等,纵观全局获得AI量化全貌,由浅入深进阶成为量化大神。

![{w:100}{w:100}{w:100}{w:100}{w:10

更新时间:2021-10-09 02:39

AI量化策略的初步理解

导语

人工智能(AI)技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此开发AI量化策略可以理解为将机器学习应用在量化投资领域。

理解机器学习算法

以StockRanker为例

机器学习算法太多,本文讨论只针对适用于金融数据预测的常用有监督型机器学习(Supervised Machine Learning)算法:StockRanker。假设我们要去预测某个连续变量Y未来的取值,并找到了影响变量Y取值的K个变量,这些变量也称为特征变量(Feature Variable)。机器学习 即是要找到一个拟合函数 ![](/wi

更新时间:2021-10-08 07:51

《风从海外来 海外AI量化最新前沿》Deep Alpha 海内外最佳实践探索研讨会文字实录

主题:The Impact of AI to Global Asset Managers: The Responses and Adoptions

演讲人:关子敬 先生 Kevin Kwan 彭博亚太区量化及数据科学专家

{w:100}{w:100}谢谢Big Quant的邀请,今天所有策略的绩效仅作交流的用途展示概念,投资人如果对策略本身有兴趣的话,请在我们网站下载白皮书或是与我们的客户经理联系。

1全球资产管理报告 AUM升高 收

更新时间:2021-09-29 03:51

2021上半年金融工程研报暗含量化5大趋势

分析师研报也是行业发展风向标,小Q援引惠博平台及“量化投资与机器学习”回顾2021年1月1日~2021年7月29日热门金融研报,总结量化行业发展趋势,做出如下5个方向猜想:

由于基础因子广为人知,在此基础上进行因子挖掘的收益提升空间相对有限。而且日频数据由于本身的数据量和信息量有限,过度

更新时间:2021-09-23 09:53

【4周年】年度AI量化大课,4大进阶模块12课时,点亮技能树

《AI 量化概览》:认识 AI 量化及其发展应用

《Python 编程基础》:Python 基础语法 + Numpy (Cheatsheet )+ 线上 DataSource 的使用

《Pandas 数据分析》:Panda 语法案例 + Pandas Cheatsheet 与绘图模块使用(K 线图)

![](/wiki/api/attachments.redirect?id=9c5a2a7c-89b8-4bb5-91cf-3d1a557

更新时间:2021-08-25 05:44

自动交易如何增加交易利润?


作者:Harry Nicholls编译:caoxiyang


导语

你有没有想过如何使你的交易策略自动化并增加交易利润?在本文中,我们将介绍算法交易的基本知识,好处和风险。准备好开始自动交易吧! 很多技术分析都涉及观察信号指标,然后根据信号进行交易。正如我在之前的文章“一个让优秀交易者高于其他交易者的行为”中所讨论的那样,你应该在你的交易日志中记录下你所有的交易,当你获得更多的经验时,你应

更新时间:2021-08-24 05:46

关于机器学习,你必须知道的10件事情

很多时候需要为非专业人士解释机器学习,本文提供以下参考。

1.机器学习意味着:从数据中学习

机器学习目前风头正劲,AI也是热搜词汇。只要将合适的数据放入合适的模型,许多问题可以迎刃而解。如果能够帮助你宣传,就叫它AI吧。但请记住,AI,除了在学术界以外,常常是大家可以随意使用的热门词汇,用于描述他们想描述的一切东西。

2.机器学习主要关乎算法与数据,尤其是数据

很高兴能够在机器学习算法,特别是深度学习领域有一些进展,但是数据才是机器学习算法实现的关键因素。机器学习可以没有复杂的算法,但不能没有好的数据。

3.除非你有许多数据,否则你应该坚持使用简单的模型

更新时间:2021-08-24 05:46

关于过拟合:机器学习方法 vs. 传统人工方法

BigQuant AI策略详解 继续讨论: @soft05jun

拟合是一种学习能力,过度拟合是机器学习方法重点在优化解决的问题之一。

关于过拟合,机器学习方法相对传统人工调参有明显的优势:

  1. 让过拟合可衡量:if you cannot measure it, you cannot improve it
    • 机器学习中,我们一般会将数据划分训练集和测试集,通过对比训练集和测试集上的效果差异,我们

更新时间:2021-08-24 05:46

最具价值的50个机器学习应用[2017年]

作者:Mybridge
翻译:BigQuant

我们比较了2017年全年近2万篇关于机器学习应用的文章,并且从中挑选出50篇最有价值的文章分享给大家。

“在硅谷,招聘一名机器学习工程师或数据科学家正在变得像招聘一名职业运动员一样。 这就是对他的要求”——[纽约时报](https://www.nytimes.com/2017/10/22/technology/artificial-in

更新时间:2021-08-24 05:46

机器学习新手十大算法之旅

作者:James Le 编译:caoxiyang


在机器学习中,有一个叫做“世上没有免费午餐”的定理(NFL)。简而言之,我们无法找到一个放之四海而皆准的最优方案,这一点对于监督学习(即预测建模)尤为重要。例如,你不能说神经网络总是比决策树好,反之亦然。因为其中有很多因素在起作用,比如数据集的大小和结构。

因此,您应该针对您的问题尝试多种不同的算法,同时,保留一组数据,即“测试集”来评估性能并选

更新时间:2021-08-24 05:46

StockRanker实盘交易的那些事儿

作为平台的铁杆用户,本文主要分享下使用StockRanker模型来实盘交易的一些经验。

在机器学习领域,预测的结果依赖于:数据、算法和特征,因此真正好的策略一定是特征选择和特征构建非常好。

平台的StockRanker模型策略生成器只是搭建了一个策略框架,输入不同的特征就可以看到不同的策略效果。去年的时候,我构造出了大约10个特征进行回测,从12年到16年底,平均年化收益达到了76%,因此就打算先用一部分小资金实盘,进一步验证特征的有效性。

因为政策原因,目前国内股票实盘交易接口并没有开放,因此量化平台都不会说自己平台上可以实盘交易,免得监管部门叫去喝茶。于是只有手动下单,好在股票持仓时

更新时间:2021-08-24 05:46

机器学习常见算法

导语

机器学习里面究竟有多少经典的算法呢?本文简要介绍一下机器学习中的常用算法。这部分介绍的重点是这些方法内涵的思想,数学与实践细节不会在这讨论。

回归算法

在大部分机器学习课程中,回归算法都是介绍的第一个算法。原因有两个:一.回归算法比较简单,介绍它可以让人平滑地从统计学迁移到机器学习中。二.回归算法是后面若干强大算法的基石,如果不理解回归算法,无法学习那些强大的算法。回归算法有两个重要的子类:即 线性回归逻辑回归

线性回归就是我们前面说过的房价求解问题。如何拟合出一条直线最佳匹配我所有的数据?一般使用“最小二乘法”来求解。“最小二乘法”的思想是

更新时间:2021-08-18 06:37

股票主动投资组合管理思想和框架

这是关于股票主动投资组合管理的第一篇教程。在开始介绍正式内容之前,我先简要简要说一下《Alpha系列》的初衷。

近年来,随着国内大数据和人工智能的迅速崛起,量化交易领域也有了长足的发展。 从原来的指标驱动型程序化交易,演化到现在的以机器学习、人工智能为代表的新型量化交易。同时,量化交易的门槛与过去相比下降了许多。 不仅是因为这些年数据科学的发展带动了python及其生态的成熟和推广,更由于类似tushare、vnpy、zipline等开源项目以及像quantopian、bigquant等量化平台的出现, 使得以前做量化先造轮子到现在量化从业者可以专注于策略的研发,使得更多的人能够进入到这个领

更新时间:2021-07-30 09:36

lightGBM_AI选股

https://bigquant.com/experimentshare/2fbb2629dcb0450bbf72e224835b4957

\

更新时间:2021-07-30 09:11

用线性随机梯度下降-回归算法实现A股股票选股

策略案例


https://bigquant.com/experimentshare/7dcb3fe1da07466aa334e3c202a7704f

\

更新时间:2021-07-30 08:12

用支持向量机-回归算法实现A股股票选股

策略案例


https://bigquant.com/experimentshare/587dfa30731644aeac4499c052f9a686

\

更新时间:2021-07-30 07:26

用线性-分类算法实现A股股票选股

策略案例


https://bigquant.com/experimentshare/5c5e31cf67c94de099b00aeab9676e48

\

更新时间:2021-07-30 07:26

三个有效的特征选择策略

导语

特征选择是除数据之外最关键的步骤。尽管这一步非常必要,但很多指导文章中却完全忽略这一过程。

本文将展示一些很棒的特征选择方法,帮助读者在机器学习中更加如鱼得水。

特征选择是什么?实际问题中,需要什么样的特征来帮助解决建模并不总是很清晰。在这个问题上,数据总是存在各种问题,比如数据过多,不相关等。特征选择主要研究如何使用算法选择出重要特征。

那为什么不将所有的特征都扔进机器学习模型,然后收工回家呢?

在实际问题中可能没有开源数据集,或者这些数据不总是含有解决问题的相关信息。在这些现实问题面前,特征选择能够最大化数据相关性,降低数据冗余度。这有助于建立好的模型,减小模型大小。

更新时间:2021-07-30 07:26

张红庆:机器学习在高频交易的应用 | 开源量化论坛发言纪要

会议:开源证券资本市场峰会,量化分论坛

日期:2020年12月8日 \n 地点:上海浦东丽思卡尔顿酒店 \n 主办:开源证券金融工程团队 \n

主题演讲:机器学习在高频交易的应用 \n

特邀嘉宾:张红庆

深圳市丽海弘金科技有限公司副总经理,高中全国奥数一等奖,华中科技大学电信系,15年移动通信行业从业经验,5年量化金融科技从业经验。

发言纪要:

大家好!感谢__开源证券金融工程团队__的

更新时间:2021-02-25 11:30

分页第1页第2页第3页第4页第5页第13页
{link}