因子分析完后,有多空组合,这个怎么套用来选股呢?
更新时间:2023-06-01 14:26
更新时间:2023-06-01 06:18
更新时间:2023-06-01 02:13
求问未来2日夏普比率最大的标注怎么写?
个股的夏普比率比较少见,可以用未来两日超额收益除以波动
更新时间:2023-06-01 02:13
请教如何在自定义运行中,用代码取得回测的年化收益、胜率、夏普比率、最大回撤数据
https://bigquant.com/experimentshare/7da6b331e82e44ee8f6f0fc656052c16
\
更新时间:2023-06-01 02:13
\
更新时间:2023-05-11 03:12
更新时间:2023-01-03 07:44
更新时间:2022-11-20 03:34
更新时间:2022-11-20 03:34
更新时间:2022-11-20 03:34
更新时间:2022-11-20 03:34
更新时间:2022-11-20 03:34
更新时间:2022-11-20 03:34
更新时间:2022-11-20 03:34
\
更新时间:2022-11-09 01:23
超参里的评分函数除了用夏普标记外,如何将年化、胜率、最大回撤加进去
更新时间:2022-11-09 01:23
回测模块的返回可以用
read_raw_perf()来读取,但是读取之后每个列的值的含义可以去哪里查呢,虽然这个链接已经写了一部分,但是列名和使用read_raw_perf()读取后的结果是对不上的,比如读取后的列名有 returns,
starting_exposure,pnl,
excess_return max_drawdown max_leverage
等等这些列的具体含义有说明文档可以查吗?
目前还没有对raw_perf进行字段文档的输出,这个我们下来整理一下近期会放到知识库中
更新时间:2022-11-09 01:23
更新时间:2022-11-05 08:13
Renaissance Technologies文艺复兴科技公司交易策略揭秘记录!该短片中详细介绍了文艺复兴科技公司多年来如何开发各种交易策略,从早期的均值回归到利用内核方法等等。
https://www.bilibili.com/video/BV1ae4y1f7Em
\
更新时间:2022-10-10 12:50
分享头部量化私募团队、策略、深度资料等
\
更新时间:2022-10-10 09:45
更新时间:2022-10-09 11:05
《Deep Learning for Portfolio Optimization》
张子豪、斯蒂芬·佐伦、斯蒂芬·罗伯茨牛津曼数量金融研究所,牛津大学
我们采用深度学习模型直接优化投资组合夏普比率。我们提出的框架规避了预测预期的要求回报并允许我们通过更新模型直接优化投资组合权重参数。我们交易交易所交易基金,而不是选择单个资产(ETF) 的市场指数以形成投资组合。不同资产类别的指数显示强大的相关性和交易它们大大减少了可用的范围可供选择的资产。我们将我们的方法与各种算法进行比较结果表明我们的模型在测试中获得了最佳性能期间,从 2011 年到
更新时间:2022-10-09 10:31
文献来源:Jennifer Bender, Jerry Le Sun and Rick Thomas, Asset Allocation vs. Factor Allocation – Can We Build a Unified Method?[J] The Journal of Portfolio Management, 2018, 45 (2) 9-22
推荐原因:近60年间,股票和债券等资产一直是多元化投资组合的主要基石。长期以来,投资者普遍认为,对不同类别的资产进行分散投资足以为组合带来多元化投资的裨益,但近期在市场大幅下挫过程中,对不同类别资产进行分散投
更新时间:2022-10-09 10:01
中国商品期货市场近30年来取得历史性突破和跨越式发展。近年来,伴随股票市场多因子选股策略的风靡,越来越多的期货界投资人士,在尝试使用多因子框架构建商品市场的CTA策略。这类策略的核心是找到各类可以影响商品市场价格涨跌的公共因子,如资产动量、波动率、宏观基本面等,构建统一框架来评估资产价格上涨、下跌的潜力,进而构建商品市场的组合投资策略,多因子策略是近年来CTA策略的一个重要分支。本文主要尝试对多因子CTA策略构建中一些常用的因子进行测评,并试图构建一个基本的多因子CTA策略,以深入洞察该类策略的运作,供投资者参考
测试的因子包括技术面因子以及宏观基本面两类因子。技术面因子采用横
更新时间:2022-10-08 10:30
文献来源:Demiguel V, Gil-Bazo J, Nogales F J, et al. Can Machine Learning Help to Select Portfolios of Mutual Funds?[J]. Social Science Electronic Publishing, 2021.
推荐原因:众所周知,事先确定未来表现优异的共同基金是一项困难的任务。本文基于大量投资者容易获得的基金特征数据,利用机器学习方法训练提升其预测能力。研究发现,利用1980年至2018年期间美国股票型基金的数据,基于机器学习方法构建的基金组合,经风险调整
更新时间:2022-08-31 09:22