夏普比率

夏普比率(Sharpe Ratio)是金融领域中用于衡量投资风险调整后表现的重要指标。它由威廉·夏普于1966年提出,用于量化投资者在承担每单位风险时所获得的超额回报率。夏普比率的计算公式为(回报率 – 无风险利率)/ 标准差,其中,回报率表示资产的平均收益,无风险利率通常与国债收益率相近,而标准差则代表资产收益的波动性或风险。 夏普比率越高,说明在相同风险水平下,投资策略所获得的回报越高,反之则越低。此指标不仅为投资者提供了一个量化工具来评估投资组合的风险与回报之间的平衡关系,还有助于比较不同资产或策略之间的性能。因此,夏普比率在金融决策、资产配置和绩效评估等方面具有广泛应用。

组合策略中如何读取单个策略夏普比例进行调仓

问题

在组合策略中,有没有办法读取 单个策略的当前夏普比率 对组合策略进行调仓?保持让每期调仓的时候选择夏普比率最高的那个策略进行下单?

视频

https://www.bilibili.com/video/BV1Ug411M7iz?p=5&share_source=copy_web

策略源码

接口获取模拟交易信号和指标进行仓位调整

更新时间:2024-06-07 10:55

如何利用滚动回测进行策略开发和因子挖掘?

问题

如何利用滚动回测进行策略开发和因子挖掘

视频

[https://www.bilibili.com/video/BV1Gr4y177FR?share_source=copy_web&vd_source=2e7dc1240ea373ea6eba1134af8dd086](https://www.bilibili.com/video/BV1Gr4y177FR?share_source=copy_web&vd_source=2

更新时间:2024-06-07 10:55

策略中调用其他因子_非AI

2021年4月22日Q1&Q2问题:

策略案例


https://bigquant.com/experimentshare/d50c07db9f7f45168dd745027c04b6d8

\

更新时间:2024-06-07 10:55

如何根据夏普比率变化或收益曲线斜率动态调整策略仓位?

问题

如何根据夏普比率变化或收益曲线斜率动态调整策略仓位?

解答

在长时间运行一些策略后发现,策略某段时间效果不好,但过段时间又起来了,以前按照每个策略的夏普比率大小,对多个策略进行动态仓位分配,发现很滞后,效果不好。能否按照每个策略夏普比率的变化率或者收益曲线的斜率,来给多个策略动态的分配不同的仓位,实现快速应对市场变化,如何操作。

见文章:基于资产配置的视角的个人理财

视频

[https://www.bilibili.com/vid

更新时间:2024-06-07 10:55

三因子线性模型(包含滚动训练)

{{membership}}

https://bigquant.com/codeshare/37d36e41-2184-4342-b581-9561f199eeec

\

更新时间:2024-06-07 10:55

三因子加工

{{membership}}


https://bigquant.com/codeshare/a04ad103-6217-4484-a57c-81cc1e64fdf6

\

更新时间:2024-06-07 10:55

Dai读取高频因子构建一个简单多因子策略

https://bigquant.com/codeshare/3b5c66d6-ed5b-46a0-8dc6-3a48cc76a482

\

更新时间:2024-05-27 07:39

如何对1-3日内上涨的股票进行标注

问题

freestyle996+如何运用股票标注的方法对1-3日内上涨的股票进行标注?

视频回放

https://www.bilibili.com/video/BV1uP4y1R7kh/?spm_id_from=333.999.0.0

策略源码

[https://bigquant.com/experimentshare/0a4bb333c1bb4f4e91d7701a3538f6f4](https://bigquant.co

更新时间:2024-05-21 09:10

多因子选股策略-股票日频

https://bigquant.com/experimentshare/c2cf252d64b7408a8071f4d78f52a5ea

\

更新时间:2024-05-20 10:04

【历史文档】大家帮我看看是咋回事,回测数据交易有问题

本帖内容对应旧版平台与旧版资源,其内容不再适合最新版平台

https://bigquant.com/experimentshare/fd3f21c915964e5b8800b41fe1314ec9

\

更新时间:2024-05-20 08:29

用线性-回归算法实现A股股票选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-20 07:17

强化学习在金融市场中的应用(上)

本文内容已经过期,不再适合平台最新版本,请查看以下最新内容,作为参考资料学习。

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

[https://bigquant.com/experimentshare/e1779fa4ec184a1fb209ebff7c588b8d](https://bigquant.com/experimentshare/e1779fa4ec184a1fb209ebff7

更新时间:2024-05-20 06:33

lightgbm多因子选股

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


预计算因子表[数据平台] https://bigquant.com/data/datasources/cn_stock_prefactors

https://bigquant.com/wiki/doc/dai-PLSbc1SbZX

[ht

更新时间:2024-05-20 06:21

基金双均线策略

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


以双均线策略为例,采用新的DataSource接口实现基金数据的读取及策略回测

[https://bigquant.com/experimentshare/ac13b3c580cd4f06ad2cce26dd718ecc](https://bigquant.com/experimentshare/ac13b3c580cd4f06ad2cce2

更新时间:2024-05-20 06:13

用线性随机梯度下降-分类算法实现A股股票选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-20 02:15

从均值方差到有效前沿(代码)

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

策略案例

https://bigquant.com/experimentshare/68b5d7cfac264dbda781c1fbcc6a4880

\

更新时间:2024-05-20 02:09

利用机器学习对冲风险

https://bigquant.com/experimentshare/d50ee96c36f84af6ad990409294db4cb

\

更新时间:2024-05-20 02:09

对冲策略研究demo示例

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

策略案例

https://bigquant.com/experimentshare/0f3871389f5846009ba425fe066d03b2

\

更新时间:2024-05-20 01:07

用StockRanker算法实现A股股票选股

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

策略案例

https://bigquant.com/experimentshare/72d5601550164505aad979f7265f8fec

\

更新时间:2024-05-20 00:50

DQN个股择时策略研究

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

\

导语

本文主要分享一个基于Deep Q Network的对于个股的择时策略

算法简介

DQN与Q-Learning

本文主要使用的是Deep Q Network。DQN是强化学习的一种方法,结合了Q-learning和深度学习神经网络。

Q-learning是用一张表来记录各个状态下的各个行为的q值,它能记录的状态

更新时间:2024-05-20 00:40

基于协整的配对交易

更新

本文内容已经过期,不再适合平台最新版本,请查看如下最新内容:

https://bigquant.com/wiki/doc/5z65lqo5y2p5pw055qe6ywn5a55lqk5pit-6x1P1362eJ

策略案例

[https://bigquant.com/experimentshare/6b05d7bd134e420387acfa25c37b283f](https://bigquant.co

更新时间:2024-05-17 09:23

用随机森林-分类算法实现A股股票选股

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 06:42

主动投资管理之信息率

https://bigquant.com/experimentshare/3e9b0e7623284f01b7e206d1a3df4b92

\

更新时间:2024-05-17 06:27

深度学习量化交易模型

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 03:49

深度学习在期货高频上的应用示例

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 02:54

分页第1页第2页第3页第4页第5页第6页
{link}