原研报标题:Generative Adversarial Nets
发布时间:2018年
作者:Ian J. Goodfellow∗, Jean Pouget-Abadie† , Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair‡ , Aaron Courville, Yoshua Bengio
本文通过对抗过程,提出了一种新的框架
更新时间:2021-11-30 03:08
原研报标题:Transformer: Attention is all you need
发布时间:2017年
作者:Ashish Vaswani、 Noam Shazeer、 Niki Parma 、Jakob Uszkoreit、 Llion Jones 、Aidan N. Gomez、 Łukasz Kaiser
主流的序列转换模型都是基于复杂的循环神经网络或卷积神经网络,且都包含一个enc
更新时间:2021-11-30 03:07
多因子体系主要包括alpha模型、风险模型、交易成本模型和组合优化,广义的alpha模型分为alpha因子构建和因子加权,是量化从业人员的研究重心但传统的alpha模型当期面临较大的挑战。
后发优势的逐渐丧失导致人工挖掘alpha因子的周期变长,国内外估值因子的长时间回撤,近年量价因子的批量拥挤等都是当前选股alpha因子层面的困境,量价因子拥挤等原因导致因子IC和组合绩效产生较大偏差,给以IC和回归为基础的动态因子加权带来挑战
除了人工合成alpha因子外,我们可以通过设计因子单元批量产生有效的alpha因子,以扩充因子库,考虑到因子IC和组合收益的不一致性,我们通过正交弱
更新时间:2021-11-26 07:56
更新时间:2021-09-08 03:03
机器学习里面究竟有多少经典的算法呢?本文简要介绍一下机器学习中的常用算法。这部分介绍的重点是这些方法内涵的思想,数学与实践细节不会在这讨论。
在大部分机器学习课程中,回归算法都是介绍的第一个算法。原因有两个:一.回归算法比较简单,介绍它可以让人平滑地从统计学迁移到机器学习中。二.回归算法是后面若干强大算法的基石,如果不理解回归算法,无法学习那些强大的算法。回归算法有两个重要的子类:即 线性回归 和 逻辑回归 。
线性回归就是我们前面说过的房价求解问题。如何拟合出一条直线最佳匹配我所有的数据?一般使用“最小二乘法”来求解。“最小二乘法”的思想是
更新时间:2021-08-18 06:37
更新时间:2021-07-30 07:26