回归、分类和排序是我们经常遇到的问题场景。本文主要介绍如何实现回归和分类两类问题的模型构建。
首先我们明确一下算法在机器学习中的地位。一般来说,机器学习有三个要素: 数据、算法和模型 。
下面我们来举两个例子,看看回归和分类问题的应用场景有什么不同。
![](/wik
更新时间:2021-07-30 08:22
《Attention Is All You Need》是一篇Google提出的将Attention思想发挥到极致的论文。这篇论文中提出一个全新的模型,叫 Transformer,抛弃了以往深度学习任务里面使用到的 CNN 和 RNN ,来做机器翻译的任务。Bert就是基于Transformer构建的,这个模型广泛应用于NLP领域,例如机器翻译,问答系统,文本摘要和语音识别等等方向。本文根据论文[《Attention Is All You Need》](https://arxiv.org/abs/1
更新时间:2021-04-23 08:06