基于CSCV框架计算三组量化研究案例的回测过拟合概率
本文基于组合对称交叉验证(CSCV)框架,以三组量化研究为案例展示回测过拟合概率(PBO)的计算流程,发现两组多因子选股模型的PBO较低,择时模型的PBO较高。案例1为7种机器学习模型的多因子选股策略,指数增强组合PBO大多在15%~50%,“XGBoost表现最佳”的结论大概率不是回测过拟合。案例2为6种交叉验证方法的多因子选股策略,多空组合PBO在20%~50%,“分组时序交叉验证表现最佳”的结论大概率不是回测过拟合。案例3为双均线50ETF择时策略,PBO在50%~90%,“参数组合[11,30]和\
更新时间:2021-11-26 07:30
更新时间:2021-11-17 06:00
想到哪里写哪里,最近总结,把思路捋直了再说。 2017年开始接触策略下半年开始了解bigquant。之前在JD。。。。后来。。。。 2017下半年到2018年上半年策略从A策略开始接触,B从A升级过来, B到C策略建立,经过上千次的回测和修改,18年下半年放下休息,等结果。 这期间A建立之后做了几十次更改到C回测估计有上千次了。形成了ABC策略组合,每一个组是十几个A-copy1组成的。我没有跟上网站的升级,我宁愿升级慢点。从旧策略慢慢移植到新的框架去。至少bug更少点吧?心里作用。
总结一下策略误区吧。 如果这个策略以后会实盘,那就这样说起: 1 定义市场容量=多少资金投入,这个和策略框架
更新时间:2021-08-24 05:46
之所以需要查看中间变量的数值是因为我们有时在编写策略、策略调试中需要检查中间变量的数值是否正确,具体方法见下:
https://bigquant.com/experimentshare/318dd5e24d3a4578b858f4a1226aca3b
\
更新时间:2021-08-24 05:46
作者:bigquant
阅读时间:5分钟
本文由BigQuant宽客学院推出,难度标签:☆☆☆
本文目的是介绍如何使用bigexpr表达式对WorldQuant公开的101个alpha进行因子构建,并进行因子测试。
根据WorldQuant发表的论文《101 Formulaic Alphas 》 669 ,其中公式化地给出了101个alpha因子。与传统方法不一样的是,他们根据数据挖掘的方法构建了101个alpha,据说里面80
更新时间:2021-04-23 07:08
导语:当我们策略回测完成时,系统会输出包含各种指标的收益曲线图,但可能因我们对这些指标的释义和内容不太熟悉,导致无法准群判断策略好坏,本文从回测各指标概念入手,希望可以帮助大家更好地理解策略回测结果。
当我们完成一个策略回测时,会得到如下图形,包含 收益概况 、 交易详情 、 每日持仓和收益 、 输出日志 。接下来,我们详细介绍这几个部分。
收益概况以曲线图的方式显示了策略在时间序列上的收益率。红色曲线为 **
更新时间:2021-04-13 09:12