本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 01:58
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 01:52
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-15 09:51
完成了数据处理,接下来就可利用平台集成的各算法进行模型训练和模型预测啦。本文将详细介绍“模型训练”、“模型预测”两大模块操作、原理。
模型训练和模型预测是AI策略区别于传统量化策略的核心,我们通过模型训练模块利用训练集因子和标注数据构建一个模型,并通过模型预测模型将预测集的因子数据输入模型进行预测。 \n
在模块列表的 机器学习 、 **深度学习
更新时间:2024-05-15 09:51
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-15 09:05
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-15 07:49
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-15 06:34
/* 使用DAI SQL为量化模型预测生成标签数据。标签反映了未来5日的收益率,并且被离散化为20个桶,每个桶代表一个收益率范围。这样,我们就可以训练模型来预测未来的收益率范围,而不仅仅是具体的收益率值。
更新时间:2024-02-01 08:26
/* 使用DAI SQL为量化模型预测生成标签数据。标签反映了未来5日的收益率,并且被离散化为20个桶,每个桶代表一个收益率范围。这样,我们就可以训练模型来预测未来的收益率范围,而不仅仅是具体的收益率值。
更新时间:2024-01-31 03:56
首先解释一下标题: CNN:卷积神经网络(Convolutional Neural Network), 在图像处理方面有出色表现,不是被川普怒怼的那个新闻网站; 股票涨跌:大家都懂的,呵呵; 股票图片:既然使用CNN,那么如果输入数据是股票某个周期的K线图片就太好了。当然,本文中使用的图片并不是在看盘软件上一张一张截下来的,而是利用OHLC数据“画”出来的; 尝试:这个词委婉一点说就是“一个很好的想法^_^",比较直白的说法是“没啥效果T_T”。
进入正题: 首先是画出图片。本文目前是仿照柱线图画的。 ![{w:100}](/wi
更新时间:2023-11-28 10:03
自己通过import xgboost可以实现自定义目标函数,但是和平台的xgboost模块相比,自己的import xgboost比平台的xgboost模块慢了很多,时间花费几乎是30倍差距。
那么,如何基于平台的xgboost,实现自定义目标函数的定义呢?
\
更新时间:2023-10-09 07:41
验证集通过这个端口传入,构造方法和训练集一样。只需要设定开始和结束的日期。
步长可以通过
![{w:100}{w:100}](/wiki/api/attachments.redirect?id=276f2f17-0d2e
更新时间:2023-10-09 07:35
\
更新时间:2023-10-09 07:09
三种构建大盘风控指标的方法关于LSTM+CNN的模型进行大盘风控的策略代码未找到,能否提供一下,谢谢。
https://bigquant.com/wiki/doc/dapan-zhibiao-fangfa-MoB3kNcAMG
更新时间:2023-10-09 06:28
更新时间:2023-10-09 06:22
更新时间:2023-10-09 03:26
麻烦工程师兄弟看一下
更新时间:2023-10-09 02:46
AIStudio是BigQuant平台以AI为核心的Cloud IDE,可以用于量化投资数据分析、因子挖掘、模型训练、回测和交易,以及更广泛的程序开发和AI模型开发训练等。
/wiki/static/upload/31/315c1087-6d07-491a-90ef-43e717997077.mp4
\
更新时间:2023-09-07 03:12
更新时间:2023-06-30 15:58
怎样使用因子库里的因子作为特征?
这个因子id没法直接使用,
只能复制因子的表达式使用吗?
更新时间:2023-06-01 14:26
是其他因子干扰了结果吗?
这个图表示在这一组因子在此模型训练过程中因子的重要性,由高到低排序。排名靠前因子的表现可能会影响到其他因子的得分,也就是说得分低的因子在这一组参与此模型训练的因子里面得分低,但是在其他因子组合或者其他模型里面不一定表现就差。
更新时间:2023-06-01 14:26
预测数据前我想做个自定义筛选,策略中只是举例,但我想实现这个功能,应该怎么把DataFrame输入模型,目前的报错是
这里需要把dataframe格式的数据转换成DataSource的类型,用如下代码就可以了。 data=DataSource.write_df(df),
更新时间:2023-06-01 02:13
为啥我的超参寻优用在DNN上,一直显示在运行,却没有结果
-update:刚把分布式运行勾选去掉,开始执行了 \n
感觉很慢,这个效率很低啊
\
更新时间:2023-06-01 02:13
平台能不能实现 先选股+后排序?
已有完善的选股策略,选股结果过多,没有找到好的排序方法。听说平台有一个stockranker很好用,我就想试试,在自己研究的时候发现,发现两种方案:1是传统方案,2是AI方案。
传统方案,比如海龟策略等,可以得到选股结果,但是里边没有模型训练,也就没有排序的功能;
AI方案,在输入特征因子的时候,只能输入选股结果相关的属性,所以不能实现先选出结果后用stockranker排序;(我理解是选股结果对AI来说就是0和1,所以什么都学不到?)
我在想如何把两者结合起来,先用传统方案选股,再用AI方案对选股结果排序
大家有什么好的
更新时间:2023-06-01 02:13
咨询一下,用stockRanker训练,不加中性化和标准化,收益不错,加了之后收益就负了,这是为什么啊
您好,stockranker算法是树状结构的,它本身是不需要标准化的,您标准化后会改变数据,也会使模型训练发生改变,进而就会造成了策略的计算改变哦
更新时间:2023-06-01 02:13