模型训练

从金融角度看,模型训练是利用历史数据,通过特定算法构建并优化数学模型的过程。其目的是揭示隐藏在海量数据中的规律,并预测未来趋势。在金融风险评估、投资策略制定、市场预测等核心领域,模型训练发挥着至关重要的作用。它能够将复杂的金融现象转化为可量化、可操作的数学表达,帮助决策者规避风险,发现价值投资机会,以及把握市场动态。随着数据量和计算能力的不断提升,模型训练在金融领域的应用将越来越广泛,成为推动金融行业创新和发展的重要驱动力。

【历史文档】策略示例-StockRanker模型结果解读

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-16 01:58

【历史文档】策略-可视化模块深入理解

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-16 01:52

【历史文档】策略-策略回测

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 09:51

【历史文档】策略-模型训练+股票预测

导语

完成了数据处理,接下来就可利用平台集成的各算法进行模型训练和模型预测啦。本文将详细介绍“模型训练”、“模型预测”两大模块操作、原理。

模型训练模型预测是AI策略区别于传统量化策略的核心,我们通过模型训练模块利用训练集因子和标注数据构建一个模型,并通过模型预测模型将预测集的因子数据输入模型进行预测。 \n {w:100}{w:100}{w:100}{w:100}

在模块列表的 机器学习 、 **深度学习

更新时间:2024-05-15 09:51

【历史文档】算子样例-滚动训练模块使用简介

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 09:05

【历史文档】算子样例-机器学习

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 07:49

【历史文档】因子构建与标注样例-构建大盘收益率因子

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-15 06:34

预测下跌要怎么打标签

/* 使用DAI SQL为量化模型预测生成标签数据。标签反映了未来5日的收益率,并且被离散化为20个桶,每个桶代表一个收益率范围。这样,我们就可以训练模型来预测未来的收益率范围,而不仅仅是具体的收益率值。

  1. 首先定义了一个名为label_data的临时表,用于计算和存储未来5日收益率,其1%和99%分位数,以及离散化后的收益率(被分为20个桶,每个桶代表一个收益率范围)。
  2. 对未来5日收益率进行了截断处理,只保留在1%和99%分位数之间的值。
  3. 选择了标签值不为空,并且非涨跌停(未来一天的最高价不等于最低价)的数据
  4. 从这个临时表中选择了日期、股票代码和标签字段,以供进模

更新时间:2024-02-01 08:26

神经网络dnn模型sql标签怎么写,预测的时候总是维度不匹配,因为多了标签列

/* 使用DAI SQL为量化模型预测生成标签数据。标签反映了未来5日的收益率,并且被离散化为20个桶,每个桶代表一个收益率范围。这样,我们就可以训练模型来预测未来的收益率范围,而不仅仅是具体的收益率值。

  1. 首先定义了一个名为label_data的临时表,用于计算和存储未来5日收益率,其1%和99%分位数,以及离散化后的收益率(被分为20个桶,每个桶代表一个收益率范围)。
  2. 对未来5日收益率进行了截断处理,只保留在1%和99%分位数之间的值。
  3. 选择了标签值不为空,并且非涨跌停(未来一天的最高价不等于最低价)的数据
  4. 从这个临时表中选择了日期、股票代码和标签字段,以供进模

更新时间:2024-01-31 03:56

利用CNN对股票“图片”进行涨跌分类——一次尝试

首先解释一下标题: CNN:卷积神经网络(Convolutional Neural Network), 在图像处理方面有出色表现,不是被川普怒怼的那个新闻网站; 股票涨跌:大家都懂的,呵呵; 股票图片:既然使用CNN,那么如果输入数据是股票某个周期的K线图片就太好了。当然,本文中使用的图片并不是在看盘软件上一张一张截下来的,而是利用OHLC数据“画”出来的; 尝试:这个词委婉一点说就是“一个很好的想法^_^",比较直白的说法是“没啥效果T_T”。


进入正题: 首先是画出图片。本文目前是仿照柱线图画的。 ![{w:100}](/wi

更新时间:2023-11-28 10:03

如何基于平台的xgboost,自定义目标函数呢?

自己通过import xgboost可以实现自定义目标函数,但是和平台的xgboost模块相比,自己的import xgboost比平台的xgboost模块慢了很多,时间花费几乎是30倍差距。

那么,如何基于平台的xgboost,实现自定义目标函数的定义呢?


\

更新时间:2023-10-09 07:41

请教dl中一些问题

问题

  1. 如何设置训练步长,在训练模块中没有这个选项
  2. 如何设置验证集,并打印loss、mae等,按照模板智能看训练集的

{w:100}{w:100}

验证集通过这个端口传入,构造方法和训练集一样。只需要设定开始和结束的日期。

步长可以通过

![{w:100}{w:100}](/wiki/api/attachments.redirect?id=276f2f17-0d2e

更新时间:2023-10-09 07:35

用财务因子怎么构建机器学习策略?

\

更新时间:2023-10-09 07:09

三种构建大盘风控指标的方法关于策略代码能否提供?谢谢

三种构建大盘风控指标的方法关于LSTM+CNN的模型进行大盘风控的策略代码未找到,能否提供一下,谢谢。

https://bigquant.com/wiki/doc/dapan-zhibiao-fangfa-MoB3kNcAMG

更新时间:2023-10-09 06:28

为什么LightGBM不能输出特征重要性

后面会报错

https://bigquant.com/experimentshare/16f3f6c7fa904475ac8a131e2345ab0a

\

更新时间:2023-10-09 06:22

keras调用失败

{w:100}说是有:

https://bigquant.com/wiki/doc/mokuai-aBcAf1yeFo

更新时间:2023-10-09 03:26

"模型训练报错 Segmentation fault"

{w:100}麻烦工程师兄弟看一下

更新时间:2023-10-09 02:46

了解AIStudio

AIStudio是BigQuant平台以AI为核心的Cloud IDE,可以用于量化投资数据分析、因子挖掘、模型训练、回测和交易,以及更广泛的程序开发和AI模型开发训练等。

/wiki/static/upload/31/315c1087-6d07-491a-90ef-43e717997077.mp4

从这里开始

关键概念

\

更新时间:2023-09-07 03:12

怎样用自定义函数,计算因子用于模型训练和预测?尤其是提取高频原始因子进行复杂再加工后得到的因子,怎么使用?按文档提供的方法,貌似可以提取因子,但详细比对,数据是错的,估计是与代码列表的date,ins

https://bigquant.com/codeshare/1e2b64b4-0a3a-4c86-b742-46a14e72ee0e

\

更新时间:2023-06-30 15:58

因子库的因子怎样使用?

怎样使用因子库里的因子作为特征?

{w:100}

这个因子id没法直接使用,

{w:100}只能复制因子的表达式使用吗?

{w:100}

更新时间:2023-06-01 14:26

短周期因子特征重要性为0

问题

{w:100}{w:100}

是其他因子干扰了结果吗?

解答

这个图表示在这一组因子在此模型训练过程中因子的重要性,由高到低排序。排名靠前因子的表现可能会影响到其他因子的得分,也就是说得分低的因子在这一组参与此模型训练的因子里面得分低,但是在其他因子组合或者其他模型里面不一定表现就差。

更新时间:2023-06-01 14:26

DataFrame如何输入模型训练

问题

预测数据前我想做个自定义筛选,策略中只是举例,但我想实现这个功能,应该怎么把DataFrame输入模型,目前的报错是

{w:100}

解答

这里需要把dataframe格式的数据转换成DataSource的类型,用如下代码就可以了。 data=DataSource.write_df(df),

更新时间:2023-06-01 02:13

超参寻优能用在深度学习上吗?

问题

为啥我的超参寻优用在DNN上,一直显示在运行,却没有结果

-update:刚把分布式运行勾选去掉,开始执行了 \n {w:100}{w:100}

{w:100}{w:100}{w:100}{w:100}

感觉很慢,这个效率很低啊

\

更新时间:2023-06-01 02:13

平台能不能实现 先选股+后排序?

问题

平台能不能实现 先选股+后排序?

解答

已有完善的选股策略,选股结果过多,没有找到好的排序方法。听说平台有一个stockranker很好用,我就想试试,在自己研究的时候发现,发现两种方案:1是传统方案,2是AI方案。

传统方案,比如海龟策略等,可以得到选股结果,但是里边没有模型训练,也就没有排序的功能;

AI方案,在输入特征因子的时候,只能输入选股结果相关的属性,所以不能实现先选出结果后用stockranker排序;(我理解是选股结果对AI来说就是0和1,所以什么都学不到?)

我在想如何把两者结合起来,先用传统方案选股,再用AI方案对选股结果排序

大家有什么好的

更新时间:2023-06-01 02:13

咨询一下,用stockRanker训练,不加中性化和标准化,收益不错,加了之后收益就负了,这是为什么啊

问题

咨询一下,用stockRanker训练,不加中性化和标准化,收益不错,加了之后收益就负了,这是为什么啊

解答

您好,stockranker算法是树状结构的,它本身是不需要标准化的,您标准化后会改变数据,也会使模型训练发生改变,进而就会造成了策略的计算改变哦

更新时间:2023-06-01 02:13

分页第1页第2页第3页第4页
{link}