本文将带你遍历机器学习领域最受欢迎的算法。系统地了解这些算法有助于进一步掌握机器学习。当然,本文收录的算法并不完全,分类的方式也不唯一。不过,看完这篇文章后,下次再有算法提起,你想不起它长处和用处的可能性就很低了。本文还附有两张算法思维导图供学习使用。 在本文中,我将提供两种分类机器学习算法的方法。一是根据学习方式分类,二是根据类似的形式或功能分类。这两种方法都很有用,不过,本文将侧重后者,也就是根据类似的形式
更新时间:2024-05-20 02:09
本文是对于medium上Boris博主的一篇文章的学习笔记,这篇文章中利用了生成对抗性网络(GAN)预测股票价格的变动,其中长短期记忆网络LSTM是生成器,卷积神经网络CNN是鉴别器,使用贝叶斯优化(以及高斯过程)和深度强化学习(DRL)优化模型中超参数。此外,文章中非常完整地实现了从特征抽取、模型建立、参数优化、实现预测的过程,其中运用了多种机器学习方法,比如BERT进行文本情绪分析、傅里叶变换提取总体趋势、autoencoder识别高级特征、XGboost实现特征重要性排序等。本文学习的思路是:GAN算法概览 – 项目思路 – 项目详解。拟在学习完成后,在Bigquant平台
更新时间:2024-05-20 02:09
第7讲:函数近似 研究科学家Hado van Hasselt解释了如何将深度学习与强化学习相结合,以实现“深度强化学习”。
https://www.youtube.com/watch?v=ook46h2Jfb4
/wiki/static/upload/62/629005a1-bc1e-4a76-a388-459ff23ee431.pdf
\
更新时间:2024-05-20 02:09
从AlphaGo到AlphaStar,深度学习的强大逐步展现给世人。那么,什么是深度学习呢?本文将简要介绍深度学习的框架以及流程。
深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。
如何使用计算机建立人脑的神经网络呢?下面介绍的感知器算法很好的模拟了人脑神经网络中的神经元。
人通过收集触觉、味觉、嗅觉、视觉与听觉来得到对外界事物的认识。计算机将人收集到的这些信息设定为输入(在下图中体现为$x_1、x_2...x_n$),通过某个函数(在下图体现为$\
更新时间:2024-05-20 02:09
BigQuant平台不仅支持传统机器学习模型,同时还对深度学习模型模块进行了封装,方便用户直接使用策略生成器开发策略,降低策略开发难度。本文对BigQuant平台上策略生成器已经支持的深度学习模块进行简单介绍。
深度学习模型通过功能层进行积木式拼接,典型的模型构架如下: 通常模型由输入层、中间层和输出层组成。中间层包括卷积层、池化层、噪声层、循环层和激活层等。输出层通常是一个全连接层(Dens
更新时间:2024-05-20 02:09
不管你是管理自己的资金还是客户资金,只要你在做资产管理,每一步的投资决策都意义重大,做技术分析或基本面分析的朋友很清楚地知道每一个决策的细节,但是通过机器学习、深度学习建模的朋友可能就会很苦恼,因为直接产出决策信号的模型可能是个黑盒子,很难明白为什么模型会产出某一个信号,甚至很多保守的私募基金把模型的可解释性放入了事前风控。其实,模型的可解释性是很容易做到的,难点在于研究员是否对模型有深入的思考和理解。
机器学习领域在过去十年中发生了显著的变化。从一个纯粹的学术和研究领域方向开始,我们已经看到了机器学习在各个领域都有着广泛的应用,如零售,技术,医疗保健,科学等等。
更新时间:2024-05-20 02:09
在深度学习十分火热的今天,不时会涌现出各种新型的人工神经网络,想要实时了解这些新型神经网络的架构还真是不容易。光是知道各式各样的神经网络模型缩写(如:DCIGN、BiLSTM、DCGAN……还有哪些?),就已经让人招架不住了。
因此,这里整理出一份清单来梳理所有这些架构。其中大部分是人工神经网络,也有一些完全不同的怪物。 尽管所有这些架构都各不相同、功能独特,当我在画它们的节点图时……其中潜在的关系开始逐渐清晰起来。 BigQuant人工智能量化投资平台是一个专注于机器学习、深度学习的量化平台,拥有A股、期货、基金、美股数据,并内置了主流的深度学习开源框架。深度学习是一门实践性学科,欢迎大家
更新时间:2024-05-20 02:09
这是本系列专题研究的第六篇:基于DNN模型的深度学习智能选股策略。本文简单介绍了和DNN相关的原理,并举了一个实例,具体展示了如何应用以及应用的结果。
神经网络的每个单元结构如下:
其对应公式如下: ![](/wiki/api/attachments.redirect?id=786ada84-4578-45b9-98a9-a281762597d
更新时间:2024-05-20 02:09
通过文章《什么是机器学习》我们大概知晓了机器学习,那么机器学习里面究竟有多少经典的算法呢?本文简要介绍一下机器学习中的常用算法。这部分介绍的重点是这些方法内涵的思想,数学与实践细节不会在这讨论。
在大部分机器学习课程中,回归算法都是介绍的第一个算法。原因有两个:一.回归算法比较简单,介绍它可以让人平滑地从统计学迁移到机器学习中。二.回归算法是后面若干强大算法的基石,如果不理解回归算法,无法学习那些强大的算法。回归算法有两个重要的子类:即 线性回归 和 逻辑回归 。
线性回归就是我们前面说过的房价求解问题
更新时间:2024-05-20 02:09
本文原载于how-to-start-a-deep-learning-project,并且在机器之心上有翻译(如何从零开始构建深度学习项目?这里有一份详细的教程)。
忽略中英文的标题,因为这并非是一个入门的详细教程,而是在深度学习应用中各个步骤阶段
更新时间:2024-05-20 02:09
当我们开始学习编程的时候,第一件事往往是学习打印"Hello World"。就好比编程入门有Hello World,机器学习入门有MNIST。
MNIST是一个入门级的计算机视觉数据集,它包含各种手写数字图片
它也包含每一张图片对应的标签,告诉我们这个是数字几。比如,上面这四张图片的标签分别是5,0,4,1。
在此教程中,我们将训练一个机器学习模型用于预测图片里面的数字。我们的目的不是要设计一个世界一流的复杂模型 -- 尽管我们会在之后给你源代码去实现一流的预测模型 -- 而是要介绍下如何使用TensorFlow。所以,我们这里会从一个很简单的数学模型开始,它叫做Soft
更新时间:2024-05-20 02:09
我们知道卷积神经网络(convnet)在计算机视觉问题上表现出色,原因在于它能够进行卷积运算,从局部输入图块中提取特征,并能够将表示模块化,同时可以高效地利用数据。这些性质让卷积神经网络在计算机视觉领域表现优异,同样也让它对序列处理特别有效。时间可以被看作一个空间维度,就像二维图像的高度或宽度。
对于某些序列处理问题,比如金融时间序列数据,这种一维卷积神经网络的效果可以媲美RNN[循环神经网络],而且计算代价通常要小很多。最近,一维卷积神经网络[通常与空洞卷积核(dilated kernel)一起使用]已经在音频生成和机器翻译领域取得了巨大成功。除了这
更新时间:2024-05-20 02:09
在MNIST上只有91%正确率,实在太糟糕。在这个小节里,我们用一个稍微复杂的模型:卷积神经网络来改善效果。这会达到大概99.2%的准确率。虽然不是最高,但是还是比较让人满意。
卷积层(Convolutional layer),卷积神经网路中每层卷积层由若干卷积单元组成,每个卷积单元的参数都是通过反向传播算法优化得到的。卷积运算的目的是提取输入的不同特征,第一层卷积层可能只能提取一些低级的特征如边缘、线条和角等层级,更多层的网络能从低级特征中迭代提取更复杂的特征。
线性整流层(Rectified Linea
更新时间:2024-05-20 02:09
Lecture 9: Policy-Gradient & Actor-Critic methods Research Scientist Hado van Hasselt covers policy algorithms that can learn policies directly and actor critic algorithms that combine value predictions for more efficient learning.
[https://www.youtube.com/watch?v=y3oqOjHilio](https://www.youtube.c
更新时间:2024-05-20 02:09
更新时间:2024-05-20 02:09
本文14323字,阅读约28分钟
导语:本文旨在用精炼的语言阐述实操层面的机器学习量化应用方法,包括给出实践中一些常见、实际问题的处理方案,并结合了量化应用实例。读完后大家可以在本平台进行实践检验。
1.人工智能量化投资概述
2.人工智能技术简介
3.机器学习在量化投资中应用的具体方法解析
AI相对于传统量化投资的优势 传统的量化投资策略是通过建立各种数学模型,在各种金融数据中试图找出市场的规律并加以利用,力所能及的模式或许可以接近某一个局部的最优,而真正的全局“最优解”或许在我们的经验认知之外。如同不需要借助人类经验的Alpha Zero,不仅
更新时间:2024-05-20 02:09
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
\
https://bigquant.com/experimentshare/723e10568f294571924b89f3953ce20b
\
更新时间:2024-05-20 01:02
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-17 10:28
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-17 03:49
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-17 03:48
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-17 02:54
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 11:00
本文内容已经过期,不再适合平台最新版本,请查看如下最新内容:
https://bigquant.com/wiki/doc/5z65lqo5y2356ev56we57up572r57uc55qe5asa5zug5a2q6ycj6ikh-3hXXZIwYtI
[https://bigquant.com/experimentshare/86296263b27
更新时间:2024-05-16 06:36
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 01:59
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 01:51