更新时间:2024-06-07 10:55
可看视频听老师的详细讲解
问:机器学习在量化中,怎样在过程中查看策略、理解机器学习的逻辑和修正?
答:
1)可解释性
2)如何减少过拟合
目前
更新时间:2024-06-07 10:55
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-06-07 10:55
如何在全连接模块中自定义swish激活函数的代码
\
https://www.bilibili.com/video/BV1DL4y1w7sb?share_source=copy_web
[https://bigquant.com/experimentshare/9f1dae69e055429c9922b4f5d038361a](https://bigquant.com/experimentshare/9f1d
更新时间:2024-06-07 10:55
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
7月30日Meetup 模板案例:
https://bigquant.com/experimentshare/99d8bec5248e4878b33a21bc119a6671
\
更新时间:2024-06-07 10:55
分享一些量化交易相关的常识信息。
**[多因子选股模型及优缺点](https://bigquant.com/wiki/doc/5asa5zug5a2q6ycj6ikh5qih5z6l5zcn6kn6ke
更新时间:2024-06-07 10:48
更新时间:2024-05-24 10:28
人工智能,深度学习,机器学习……不管你在从事什么工作,都需要了解这些概念。否则的话,三年之内你就会变成一只恐龙。 —— 马克·库班
库班的这句话,乍听起来有些偏激,但是“话糙理不糙”,我们现在正处于一场由大数据和超算引发的改革洪流之中。
首先,我们设想一下,如果一个人生活在20世纪早期却不知电为何物,是怎样一种体验。在过去的岁月里,他已经习惯于用特定的方法来解决相应的问题,霎时间周围所有的事物都发生了剧变。以前需要耗费大量人力物力的工作,现在只需要一个人和电就能完成了。
而在现在的背景下,机器学习、深度学习就是新的“电力”。
所以呢,如果你还不了解深度学习有多么强大,不妨就从这篇文章开
更新时间:2024-05-22 10:41
更新时间:2024-05-21 08:15
新版本暂无深度学习可视化模块
在阅读了 深度学习的简要介绍后,本文将介绍深度学习DNN模型及其在量化投资领域中的应用。
机器学习作为人工智能的核心,其传统算法在解决很多问题上都表现出了高效性。随着近些年数据处理技术上的进步和计算能力的提升,深度学习得以在很多问题上也大放光彩,成为近一段时间互联网、金融等领域的大热门。
在量化投资领域,机器学习尤其是由统计学延伸的各种算法一直以来都被尝试应用在选股、择时等策略的开发上,随着深度学习在其他领域上的突破,其在自动化交易甚至投资策略的自开发自
更新时间:2024-05-21 07:27
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-20 10:26
本文内容已经过期,不再适合平台最新版本,请查看以下最新内容,作为参考资料学习。
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
[https://bigquant.com/experimentshare/e1779fa4ec184a1fb209ebff7c588b8d](https://bigquant.com/experimentshare/e1779fa4ec184a1fb209ebff7
更新时间:2024-05-20 06:33
\
机器学习的研究领域包括有监督学习(Supervised Learning),无监督学习(Unsupervised Learning),半监督学习(Semi-supervised Learning)和强化学习(Reinforcement Learning)等诸多内容。针对有监督学习和半监督学习,都需要一定数量的标注数据,也就是说在训练模型的时候,全部或者部分数据需要带上相应的标签才能进行模型的训练。但是在实际的业务场景或者生产环境中,工作人员获得样本的成本其实是不低的,甚至在某些时候是相对较高的,那么如何通过较少成本来获得较大价值的标注数据,进一步地提升
更新时间:2024-05-20 06:19
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
\
https://bigquant.com/experimentshare/421fbaa682a04d6bacf4d2f1f47b54c6
\
更新时间:2024-05-20 06:04
TensorFlow是一个由Google开发的开源机器学习库,用于数据流编程。它允许开发者构建和训练复杂的深度学习模型,以解决各种问题。自从2015年发布以来,TensorFlow已经成为深度学习领域最受欢迎的框架之一,广泛应用于计算机视觉、自然语言处理、声音识别、时间序列分析等领域。
TensorFlow的名字来源于其处理的核心数据结构“张量”(Tensors),它是一个多维数组或列表
更新时间:2024-05-20 03:07
本文介绍了LSTM的相关内容和在股票价格预测上的应用。
LSTM(Long Short Term Memory)是一种 特殊的RNN类型,同其他的RNNs相比可以更加方便地学习长期依赖关系,因此有很多人试图将其应用于 时间序列的预测问题 上。
汇丰银行全球资产管理开发副总裁Jakob Aungiers在他的个人网站上比较详细地介绍了LSTM在Time Series Prediction上的运用([http://www.jakob-aungiers.com/articles/a/LSTM-Neural-Network-
更新时间:2024-05-20 02:09
更新时间:2024-05-20 02:09
本文为旧版实现,供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
\
这是本系列专题研究的第五篇:基于长短期记忆网络LSTM的深度学习因子选股模型。LSTM作为改进的RNN(循环神经网络),是一种非常成熟的能够处理变化的序列数据的神
更新时间:2024-05-20 02:09
第7讲:函数近似 研究科学家Hado van Hasselt解释了如何将深度学习与强化学习相结合,以实现“深度强化学习”。
https://www.youtube.com/watch?v=ook46h2Jfb4
/wiki/static/upload/62/629005a1-bc1e-4a76-a388-459ff23ee431.pdf
\
更新时间:2024-05-20 02:09
本文是对于medium上Boris博主的一篇文章的学习笔记,这篇文章中利用了生成对抗性网络(GAN)预测股票价格的变动,其中长短期记忆网络LSTM是生成器,卷积神经网络CNN是鉴别器,使用贝叶斯优化(以及高斯过程)和深度强化学习(DRL)优化模型中超参数。此外,文章中非常完整地实现了从特征抽取、模型建立、参数优化、实现预测的过程,其中运用了多种机器学习方法,比如BERT进行文本情绪分析、傅里叶变换提取总体趋势、autoencoder识别高级特征、XGboost实现特征重要性排序等。本文学习的思路是:GAN算法概览 – 项目思路 – 项目详解。拟在学习完成后,在Bigquant平台
更新时间:2024-05-20 02:09
不管你是管理自己的资金还是客户资金,只要你在做资产管理,每一步的投资决策都意义重大,做技术分析或基本面分析的朋友很清楚地知道每一个决策的细节,但是通过机器学习、深度学习建模的朋友可能就会很苦恼,因为直接产出决策信号的模型可能是个黑盒子,很难明白为什么模型会产出某一个信号,甚至很多保守的私募基金把模型的可解释性放入了事前风控。其实,模型的可解释性是很容易做到的,难点在于研究员是否对模型有深入的思考和理解。
机器学习领域在过去十年中发生了显著的变化。从一个纯粹的学术和研究领域方向开始,我们已经看到了机器学习在各个领域都有着广泛的应用,如零售,技术,医疗保健,科学等等。
更新时间:2024-05-20 02:09
在深度学习十分火热的今天,不时会涌现出各种新型的人工神经网络,想要实时了解这些新型神经网络的架构还真是不容易。光是知道各式各样的神经网络模型缩写(如:DCIGN、BiLSTM、DCGAN……还有哪些?),就已经让人招架不住了。
因此,这里整理出一份清单来梳理所有这些架构。其中大部分是人工神经网络,也有一些完全不同的怪物。 尽管所有这些架构都各不相同、功能独特,当我在画它们的节点图时……其中潜在的关系开始逐渐清晰起来。 BigQuant人工智能量化投资平台是一个专注于机器学习、深度学习的量化平台,拥有A股、期货、基金、美股数据,并内置了主流的深度学习开源框架。深度学习是一门实践性学科,欢迎大家
更新时间:2024-05-20 02:09
这是本系列专题研究的第六篇:基于DNN模型的深度学习智能选股策略。本文简单介绍了和DNN相关的原理,并举了一个实例,具体展示了如何应用以及应用的结果。
神经网络的每个单元结构如下:
其对应公式如下: ,通过某个函数(在下图体现为$\
更新时间:2024-05-20 02:09