本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-06-12 03:09
在机器学习中策略中,数据正态分布或方形分布对训练的准确性产生重要影响吗?如果有,有什么方法处理呢?
https://www.bilibili.com/video/BV1jT4y1R7wc?share_source=copy_web
\
更新时间:2024-06-07 10:55
#逻辑回归
这也称为 logit 回归。逻辑回归是一种基于过去数据预测事件二元结果的分析方法。
当因变量是定性的并且取二进制值时,它被称为二分变量。
如果我们使用线性回归来预测这样的变量,它将产生 0 到 1 范围之外的值。此外,由于二分变量只能取两个值,残差不会围绕预测线呈正态分布。
Logistic 回归是一种非线性模型,它产生一条逻辑曲线,其中值限制为 0 和 1。
将此概率与阈值 0.5 进行比较,以决定将数据最终分类为一个类别。因此,如果一个类的概率大于 0.5,则将其标记为 1,否则标记为 0。
金融中逻辑回归的用例之一是它可以用来预测股票的表现。
#分位数回归
更新时间:2023-10-09 07:12
均值方差理论框架的三大假设与真实的投资环境有很大偏差:资产回报为正态分布的假设,忽略了真实分布的尖峰厚尾与非对称性;波动率作为风险度量的假设,忽略了上行与下行风险的不对称性;组合优化目标为单位风险回报最大化的假设,忽略了具体回报目标,而回报目标决定了组合为此需要承担的最小风险,达不到目标也是一种风险。
本报告的目的即修正这三大假设,我们认为投资者真正关心的风险是:本金安全风险和投资目标不达风险,由此提出了一种全新的风险度量方式。同时通过核密度估计和多元正态分布变换我们拟合了资产真实分布的偏态、峰态和相关性,由此产生的随机数能帮助我们采用蒙特卡洛的方法计算风险度量,形成有效的风险
更新时间:2022-08-31 10:19
策略Alpha收益的定义取决于投资者控制了哪些风险,Alpha因子的ZSCORE可以通过多期横截面回归取平均的方式转化成预测收益率,输入后续的组合优化过程。
在两个变量满足正态分布时,Pearson 和Spearman相关系数的数值很接近,但Spearman秩相关系数在做显著性检验时不依赖于变量的正态分布特性,更稳健,因此因子选股计算IC时多采用后者。
Alpha因子是否需要做风险中性化处理取决于做组合优化时是否做了对应的风险暴露控制,并非风险因素剔除的越多越好。当构建的组合完全控制了风险暴露时,风险调整IC(risk adjusted IC)会比Purifed
更新时间:2022-08-30 09:49
高阶矩的存在与影响
在马科维茨的资产定价理论中,通过期望(实际上是一阶原点矩)来描绘资产的收益,方差(二阶中心矩)来刻画资产的风险。这样做的基础是假设资产价格服从正态分布。但在实际中,这一点很难保证,特别是在市场大跌遭遇危机之时,资产价格迅速下降,震幅明显上升,波动率迅速升高,资产价格会是非平稳的高斯分布,这样仅仅用一阶和二阶矩来刻画资产价格的时间序列就会是不恰当的。此时高阶矩会异常发散,迅速增大,我们不可以忽略高阶矩的存在以及影响。
高阶矩对于市场指数具有领先效果
通过观察我们发现,实际市场中二阶矩并不恒定。如果我们用采用正态分布的假设,仅仅用趋势项与波动
更新时间:2022-02-17 02:31
研究结论
策略Alpha收益的定义取决于投资者控制了哪些风险,Alpha因子的ZSCORE可以通过多期横截面回归取平均的方式转化成预测收益率,输入后续的组合优化过程
在两个变量满足正态分布时,Pearson 和Spearman相关系数的数值很接近,但Spearman秩相关系数在做显著性检验时不依赖于变量的正态分布特性,更稳健,因此因子选股计算IC时多采用后者。
Alpha因子是否需要做风险中性化处理取决于做组合优化时是否做了对应的风险暴露控制,并非风险因素剔除的越多越好。当构建的组合完全控制了风险暴露时,风险调整IC(risk adjusted IC)会比Purifed alph
更新时间:2021-11-22 07:53