量化交易

量化交易,金融领域之尖端技术,依托强大的数学模型与高速计算机,捕捉市场微妙波动中的盈利机遇。此方法注重数据的分析与模型的构建,利用历史数据预测未来趋势,旨在消除人为情绪对交易决策的影响。其核心在于编写算法,对市场进行快速、准确的反应,实现自动化交易。量化交易的崛起,象征着科技与金融的深度融合,为投资者打开了一扇全新的理性投资之门。

一个脑回路清奇的低频量化研究/交易模型……

一个十五年前开始研究量化模型的人,在A股量化择时的研究上有了一些看起来还不错的成果,发个简介出来大家围观下,有兴趣的朋友可以讨论、交流下。

模型所使用的都是万得日线级别数据,没有未来数据,根据前一日收盘的各种数据使用在EXCEL表格中数百列既定公式(模型)得出当日看多/看空(择时)及交易对象。

模型详细介绍放在附件里,里面的图都是EXCEL基于万得数据的回测效果图。模型做出来有几年了,22年前主体有些小优化,之后在研究应用。论坛里不要问有没实践。谢谢!


[/wiki/static/upload/52/52303662-927c-4aa0-96d5-af90cc49af8b.pdf](

更新时间:2024-05-17 07:49

深度学习量化交易模型

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 03:49

如何结合欧奈尔的RPS指标,开发AI量化策略?

问题

如何结合欧奈尔的RPS指标,开发AI量化策略?

讲解

1988年,欧奈尔将他的投资理念写成了《笑傲股市How to Make Money in Stocks》。书中总结了选股模式CANSLIM模型,每一个字母都代表一种尚未发动大涨势的潜在优质股的特征。

更新时间:2024-05-16 10:24

基本面量化

更新

本文策略代码部分已经过期,不再适合平台最新版本,请查看如下最新内容:

https://bigquant.com/wiki/doc/5z65pys6z2i6yep5yyw-vbxmD0RsJV

也可参考新版类似策略:

https://bigquant.com/wiki/doc/116-mcfVsYFPFP

\

导语

公司的基本面

更新时间:2024-05-16 06:35

基于tick的日内接刀策略

https://bigquant.com/experimentshare/665da325d93a48c397f0fe70abdca825

\

更新时间:2024-05-15 02:10

常见量化投资策略

导语

简单来讲,量化投资就是利用计算机科技并采用一定的数学模型去实现投资理念、实现投资策略的过程。

量化交易 是指借助现代统计学和数学的方法,利用[计算机技术来进行交易的证券投资方式。量化交易从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,用数量模型验证及固化这些规律和策略,然后严格执行已固化的策略来指导投资,以求获得可以持续的、稳定且高于平均收益的超额回报。

量化投资模型只是一种工具、一种方法、一种手段,能实现成熟而有效的投资理念,需要不断根据投资理念的变化、市场状况的变化而进行修正、改善和优化,换而言之,有效的模型建立在适应

更新时间:2024-05-15 02:10

低频因子构建:Alpha101因子构建(5)

{{membership}}

https://bigquant.com/codeshare/ba14d6a1-e34e-4d7c-8c69-c4359fc14821

\

更新时间:2024-04-28 08:47

低频因子构建:Alpha101因子构建(4)

{{membership}}

https://bigquant.com/codeshare/f263aa9a-4c52-45ff-aa1f-346efa3f548e

\

更新时间:2024-04-28 08:47

低频因子构建:Alpha101因子构建(3)

{{membership}}

https://bigquant.com/codeshare/df99fe2c-c320-40ba-8b15-5030a15b1cc3

\

更新时间:2024-04-28 08:46

低频因子构建:Alpha101因子构建(2)

{{membership}}

https://bigquant.com/codeshare/41b38a69-8c52-4a6f-954a-50a4a31104bc

\

更新时间:2024-04-28 08:46

KDJ策略:超买超卖

因为很多量化在线平台目前还不支持期货交易,且KD指标对大盘和热门大盘股有着较高的准确性,此策略选取'605588.SH'为标的股票,000300.SH为参考标准。\n策略逻辑:\n当kt>80,dt>80, jt>100时,卖出\n当kt<20,dt<20, jt<0 时,买入


\

策略源码:


{{membership}}

[https://bigquant.com/codeshare/c4d61821-4048-4560-9ce4-372b28202ccb](https://bigquant.com/codeshare/c4d61821-4048-4560-9ce

更新时间:2024-04-25 07:26

KDJ策略:顶背离,底背离

因为很多量化在线平台目前还不支持期货交易,且KD指标对大盘和热门大盘股有着较高的准确性,此策略随机选取'603896.SH'为标的股票,000300.SH为参考标准。\n策略逻辑:\n当kt-1>80,dt-2>80, jt>100时,股价创50日新高,KDJ指标未创新高,卖出\n当kt-1<20,dt-2<20, jt<0时,股价创50日新低,KDJ指标未创新低,买入


\

策略源码:


{{membership}}

[https://bigquant.com/codeshare/823169b0-157a-41a9-b919-d727febb55c2](https:

更新时间:2024-04-25 07:26

BigTrader AI量化交易终端 - 实盘交易终端

安装并登录

1、下载BigTrader AI量化交易终端,解压缩,双击目录下的bigtraderterminal.exe运行。

2、输入交易账户、登陆密码,选择节点并登录。

3、终端界面布局

  • 左侧为账户列表
  • 右侧为账户详情
  • 账户详情上方为通知栏
  • 账户详情中部为实时行情与手动交易工具
  • 账户详情下方为功能栏

查看当前持仓、今日成交、今日委托

1、点击当前持仓分页,即可查看当前持仓的标的。

2、点击

更新时间:2024-04-16 07:57

关于中金高频多因子构建的求助

最近读到中金量化多因子系列中提到一些高频因子,比如50分钟K线最高与最低价相关系数平方的均值、成交量最高50根K线成交量收益率动量等等,那么根据分钟行情数据构建出来的话,应该是计算出多行的数据,那么对于我们量化爱好者来说,做因子测试的话是利用这些日内多行的数据吗?还是需要做降频处理到每日只取一行数据?之前听万老师讲课听过一般会对高频因子做降频处理,这样处理数据算力负担不会太大。所以有些疑惑,一、想确认下刚才所讲的这两个高频因子是需要取多行数据还是可以降频处理?二、如果可以做降频处理,那么采用什么方式处理比较好?比如取它们均值还是什么?

更新时间:2024-03-26 12:56

dai+optuna+vectorbt编写CTA策略并调参

https://bigquant.com/codeshare/0ffb5755-3b0a-4e5f-95d8-4d37e9d5fac0


https://bigquant.com/codeshare/77aeff8a-3028-44b5-93ec-68867a08466d

\

更新时间:2023-11-13 02:45

盘中最佳交易点的量化分析方法

作者:chenao1106

导语

本次分享内容:拿⼀个策略案例,介绍盘中买卖量化如何实现,收益变化如何?

我们平时看到的策略,买卖时间点基本上是开盘、收盘这两个时间点,但经数据分析按年维度看,⼤盘即使在上涨情况,开盘买第⼆天收盘卖,胜率达不到50%,通过近5年数据分析,⼤盘如果全年持平情况,胜率约48%。全年按250个交易⽇计算,持仓2天的超短线,会有125轮交易。按48%的胜率,即胜率60次,亏损65次,做短线的朋友⼀般会选择波动相对⼤点的股票去做,持仓2天平均盈亏的幅度按4%计算,按开盘买、第⼆天收盘卖,这个买卖时机的因素会导致全年亏损预计为(65-60)*4%=20%。我们

更新时间:2023-11-10 09:17

新手如何快速学习量化交易

Bigquant平台提供了较丰富的基础数据以及量化能力的封装,大大简化的量化研究的门槛,但对于较多新手来说,看平台文档学会量化策略研究依旧会耗时耗力,我这边针对新手从了解量化→量化策略研究→量化在实操中的应用角度,整理了一些视频+配套源码,有兴趣的朋友,可详见链接观看,https://note.youdao.com/s/RlfuJuCB

资料内容主要包括:AI策略编写、非AI策略编写、大盘数据分析等

如:下面这个策略就是非AI策略编写,接合大盘、板块、个股当前的市场特性,自定义选股逻辑。

![{w:100}{w:100}{w:100}](/wiki/api/attachments

更新时间:2023-10-09 06:37

有小时级别的AI策略范例吗?

最好更细粒度的, 比如分钟级别。

好像没找到。 求例子。

更新时间:2023-10-09 03:04

模拟没有卖出信号

请问这个卖出是否哪里设置不对,用这个trade去跑回测是可以正常运行的 也会买入卖出,但是放到模拟里面 他只买入 不卖出

回测引擎:每日数据处理函数,每天执行一次




def bigquant_run(context, data): # 按日期过滤得到今日的预测数据 ranker_prediction = context.ranker_prediction[ context.ranker_prediction.date == data.current_dt.strftime('%Y-%m-%d')] #----------------------------------

更新时间:2023-10-09 02:50

华西证券机器学习择时系列之三:LSTM模型市场择时策略 2021/09/09

摘要

量化择时交易策略

机器学习量化交易策略的制定,是通过从海量历史数据中,利用计算机强大的处理能力,挖掘并分析出那些能够为投资者带来收益的各种大概率可行的投资方式来实现的。通过数学模型对这些策略进行分析并加以验证,以期望让投资者获得更高更稳定的收益,或更合理地规避风险。

长短期记忆模型具有明显优势

长短期记忆模型通过记忆单元有效地学习长期依赖关系,在金融市场预测中具有明显优势长短期记忆网络是人工神经网络的一种,具有负责计算时间序列中各个观测值之间依赖性的能力,同时具有快速适应趋势中急剧变化的固有能力。所以,长短期记忆模型可以在波动的时间序列中很好地工作。在处理股

更新时间:2023-06-13 06:53

另类异质量化策略:20后的Trendflex策略(2022.8.24)

前沿

今天整个大市表现不好,可能是昨天任总的讲话,将寒气从制造业传导到了资本市场,咱也要居安思危,探索进取,在量化交易领域存活下去。

裹着被子爬(f)梯(q)子,看看大洋彼岸的宽客们,都在鼓捣些什么,有啥新奇的玩意儿。

你还别说,这次瞎逛还是蛮有收获的,最大的感慨就是,大神们的想法总是那么相通,开发的指标/策略总也是那么相似。

之前给大伙儿介绍过一个另类的量化策略:*[K线面积交易法](https://mp.weixin.qq.com/s?__biz=MzkyODI5ODcyMA==&mid=2247484161&idx=1&sn=85b980eb19f4d016b7f1a42f

更新时间:2023-06-13 06:53

基于深度强化学习的股票交易

利用算法进行股票量化交易是当今金融市场的一个重要趋势。在国际象棋和围棋等诸多复杂的游戏中,深度强化学习(DRL)智能体都取得了惊人的成绩。深度强化学习的理论同样适用于股票市场的量化决策。本文介绍了同济大学计算机科学与技术系的上海市大学生创新创业训练计划优秀项目:「基于深度强化学习的金融量化策略研究」,解读了如何训练一个 A 股市场的深度强化学习模型,以及回测的绩效表现。

在该项目中,研究者把股票市场的历史价格走势看作一个复杂的不完全信息环境,而智能体需要在这个环境中最大化回报和最小化风险。相比于其他传统机器学习算法,深度强化学习的优势在于对股票交易任务进行马尔可夫决策过程建模,没有将

更新时间:2023-06-13 06:53

如何在日频交易模块中实现涨停不卖?

问题

如何在日频交易模块(Trade)中实现涨停不卖?

解答

看这里:https://bigquant.com/wiki/doc/tiaojian-xinhao-5xvfPyKjQ0

这个教程里有。


{w:100}

\

更新时间:2023-06-01 02:13

取某一天的某一个值

问题

比如我想获得昨天以前30天内最高收盘价当天的MACD值,应该如何获取

\

解答

可以参考以下代码:

  1. 通过 ts_argmax(close_0, 30) 获取过去30天内的最大值发生在哪一天

  2. 通过 ta_macd_hist(close_0, fastperiod=12, slowperiod=26, signalperiod=9) 获取MACD指标

  3. 通过 DataFrame 重置索引的方式获取偏移 n 天后的MACD指标


    [https://bigquant.com/experimentshare/fa0b9062d376487abf7

更新时间:2023-06-01 02:13

几个常见AI量化交易问题

年后,北京一个忠实用户问了几个问题,我整理了下,也方便持续交流。

他给我留言的问题如下:


  1. 我们的策略回测时,用的模型有没有把验证集的数据学习了?
  2. 滚动回测的效果远远不如常规的 可能原因时什么?
  3. 短期交易,大户资金流比较重要,有什么帖子或者研报发我提供点思路?
  4. 预测明天股票,一定要放在回测里,收通知吗? 验证集最后一天也成最近一天交易日,可以预测吗?

这是他的原话,一个字没有修改,因为我怕理解有偏差。

回测是否学习验证集数据?

在机器学习算法中,我们把可以获得到的数据分为训练集,验证集和测试集,之所以这样划分,是因

更新时间:2023-06-01 02:13

分页第1页第2页第3页第4页第5页
{link}