本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-15 06:34
如何把我的因子中创建的因子,引入输入特征列表模块中
假设我们采用新的模版代替原来输入特征列表的部分?直接用“输入特征(DAI SQL)”代替,貌似报错了。或者有相关用新模版建立线性-回归算法策略的文档吗,这样就可以用自己的数据进行策略分析了。
![](/wiki/api/attac
更新时间:2024-02-04 02:45
逻辑上,以每一天回顾历史,比较是否是新低日,然后return一个bool变量。以这样的变量得到新的特征列,然后用自定义模块输入到模型中
更新时间:2023-10-09 07:55
\
更新时间:2023-10-09 07:35
\
更新时间:2023-10-09 07:09
https://bigquant.com/experimentshare/75aff243f241447da1d1994ed9d29c44
如何实现分类任务啊,怎么在原有策略上修改
更新时间:2023-10-09 07:05
更新时间:2023-10-09 07:03
三种构建大盘风控指标的方法关于LSTM+CNN的模型进行大盘风控的策略代码未找到,能否提供一下,谢谢。
https://bigquant.com/wiki/doc/dapan-zhibiao-fangfa-MoB3kNcAMG
更新时间:2023-10-09 06:28
比如 PE>0这种变量
更新时间:2023-10-09 03:40
消息在股票交易中有很大的影响力,如果没有对消息的处理会导致策略经常中雷,怎么办呢?
更新时间:2023-10-09 03:28
需要在特征里表述,之前5日涨停次数我是这么写的:
ztnum=where(price_limit_status_0==3,1,0)+where(price_limit_status_1==3,1,0)+where(price_limit_status_2==3,1,0)+where(price_limit_status_3==3,1,0)+where(price_limit_status_4==3,1,0)
对于周期较长的,这种写法就不太合适了。
更新时间:2023-10-09 02:52
\
更新时间:2023-06-27 03:23
\
更新时间:2023-06-13 06:50
ZScoreNorm标准化后输出全为空值?
https://bigquant.com/experimentshare/e91b4eed4f534753a3692800f33a4737
\
更新时间:2023-06-01 02:13
回归问题的标签设置
\
更新时间:2023-06-01 02:13
例如我要在特征中加入一个因子:统计30日内收益小于5%的天数,该怎么写
更新时间:2023-06-01 02:13
请问这个错误是什么原因
筛选过后的classes_prob_0没有数据,则索引[0]找不到相关的数据
更新时间:2022-12-20 14:20
模型板块包含了AI算法模型,多因子模型等一些研究内容。
更新时间:2022-12-06 14:42
更新时间:2022-11-20 03:34
想实现如下功能: 特征A:判断5日均线>10日均线,记1,否则计-1 特征B:sum(‘A’,10) 记录10天内5日大于10日的天数
如果a用where(ta_sma_5_0>=ta_sma_10_0,1,-1) ,则B无法sum; sum(int(‘A’),10), invalid function: int 转换也不让用
请问该如何实现这个特征呢?
更新时间:2022-09-16 00:27
文献来源:Leippold, M., Wang, Q. & Zhou, W. (2021). Machine-Learning in the Chinese Stock Market. Journal of Financial Economics.
推荐原因:随着机器学习在金融和经济领域的应用迅速兴起,越来越多的学者利用机器学习工具研究股票的截面和时间序列预测。而中国股票市场历史较短,制度依然处于不断完善的阶段,有着自身的特殊性。本文根据中国市场的特征构建了一个全面的股票收益预测因子集,并利用几大流行的机器学习算法进行实证分析。经过CSPA条件预测能力检验,作者发现神经
更新时间:2022-08-31 08:45
机器学习问题和其流程
机器学习问题本质上在于找出使得经验风险泛函(样本误差)最小的建模流程,基本的流程可以分为特征工程、模型训练和模型融合。本篇就上述三个过程,给出相关算法的介绍,并补充了之前系列报告中未详细介绍的内
机器学习三大步骤
特征工程包含特征构建、特征提取和特征选择三个过程,以选择相对最优的特征空间。特征工程往往会采用无监督和有监督的机器学习算法。机器学习模型可以分为线性模型、树模型和深度学习模型。线性模型主要体现了数据中的线性关系,如输入与输出的线性关系,点集的线性可分;树模型可以很好的捕捉输入与输出的非线性关系,和线性模型相辅相成。一些改进的随
更新时间:2022-08-31 01:53
机器学习系列报告
本系列报告试图系统全面性的介绍各种不同的机器学习方法,并且结合具体的在投资研究领域应用实例、交易策略及code示例,说明其应用情景和实现方法。机器学习的方法可以分为以下几类:监督学习、无监督学习、深度学习及其他机器学习方法(例如强化学习),对应到具体的模型上数量则更是繁多,目前大部分机器学习模型并未广泛的应用在投研领域,因此本系列主要偏重于在投研领域有应用潜力的模型及方法。此篇将以介绍监督学习方法为主
监督学习模型之回归类模型及其应用
与普通线性回归不同,监督学习中的惩罚回归模型和非参数回归,可以分别用于处理输入变量中存在大量线性相关性关系
更新时间:2022-08-31 01:52
更新时间:2022-05-22 01:17
更新时间:2022-04-21 06:21