特征工程

特征工程在金融领域的应用,实质上是利用数据和统计学方法,挖掘和提炼影响金融决策的关键因素,将之转化为模型可理解的特征,进而提高金融模型的预测能力和决策效率。特征工程涉及特征构建、特征选择以及特征转换等环节,它能从复杂多变的市场环境中提取出关键信息,帮助金融机构在风险评估、投资策略、信贷审批等核心业务上做出更精准、更智能的决策。例如,在信贷风险评估中,特征工程可以通过整合借款人的历史信用记录、财务状况、社交网络行为等多维度数据,构建出全面而深入的风险评估特征,进而增强风险模型的预测精度,提升信贷决策的科学性和有效性。总的来说,特征工程对于金融机构提升数据驱动决策的能力,实现更精细化、智能化业务管理有着重要的价值和意义。

【平台使用】用财务因子怎么构建机器学习策略?

\

更新时间:2025-02-16 02:18

【其他】特征是哑变量,可以加到stockranker模型中吗?

问题

逻辑上,以每一天回顾历史,比较是否是新低日,然后return一个bool变量。以这样的变量得到新的特征列,然后用自定义模块输入到模型中

更新时间:2025-02-16 01:11

【代码报错】Transformer模型固化后预测出错?

{w:100}

\

更新时间:2025-02-16 01:06

【其他】Tabnet如何实现分类任务

https://bigquant.com/experimentshare/75aff243f241447da1d1994ed9d29c44

如何实现分类任务啊,怎么在原有策略上修改

更新时间:2025-02-15 15:36

【平台使用】XGBoost分类模型如何评价

缺少pred_lable,怎么样能把这个加上??

https://bigquant.com/experimentshare/33b77199cc314cdba3fde44c917e60b3

\

更新时间:2025-02-15 15:33

【其他】三种构建大盘风控指标的方法关于策略代码能否提供?谢谢

三种构建大盘风控指标的方法关于LSTM+CNN的模型进行大盘风控的策略代码未找到,能否提供一下,谢谢。

https://bigquant.com/wiki/doc/dapan-zhibiao-fangfa-MoB3kNcAMG

更新时间:2025-02-15 15:09

【其他】stockranker是否能用01变量做特征?

比如 PE>0这种变量

更新时间:2025-02-15 14:36

【其他】请问如何构建消息类因子?

消息在股票交易中有很大的影响力,如果没有对消息的处理会导致策略经常中雷,怎么办呢?

更新时间:2025-02-15 14:25

【指标定制】如何获取指定天数的涨停次数?

需要在特征里表述,之前5日涨停次数我是这么写的:

ztnum=where(price_limit_status_0==3,1,0)+where(price_limit_status_1==3,1,0)+where(price_limit_status_2==3,1,0)+where(price_limit_status_3==3,1,0)+where(price_limit_status_4==3,1,0)

对于周期较长的,这种写法就不太合适了。

更新时间:2025-02-15 14:10

【平台使用】用自定义的数据或者因子,结合原有因子,进行机器学习策略选股遇到的问题

如何把我的因子中创建的因子,引入输入特征列表模块中

假设我们采用新的模版代替原来输入特征列表的部分?直接用“输入特征(DAI SQL)”代替,貌似报错了。或者有相关用新模版建立线性-回归算法策略的文档吗,这样就可以用自己的数据进行策略分析了。

![](/wiki/api/attac

更新时间:2025-02-15 12:00

机器学习量化投资实战指南

本文14323字,阅读约28分钟

导语:本文旨在用精炼的语言阐述实操层面的机器学习量化应用方法,包括给出实践中一些常见、实际问题的处理方案,并结合了量化应用实例。读完后大家可以在本平台进行实践检验。

文章概览:

1.人工智能量化投资概述

2.人工智能技术简介

3.机器学习在量化投资中应用的具体方法解析

AI相对于传统量化投资的优势 传统的量化投资策略是通过建立各种数学模型,在各种金融数据中试图找出市场的规律并加以利用,力所能及的模式或许可以接近某一个局部的最优,而真正的全局“最优解”或许在我们的经验认知之外。如同不需要借助人类经验的Alpha Zero,不仅

更新时间:2025-01-09 10:19

一文读懂遗传算法(附python)


几天前,我着手解决一个实际问题——大型超市销售问题。在使用了几个简单模型做了一些特征工程之后,我在排行榜上名列第 219 名。

{w:100%}{w:100}{w:100}{w:100}

虽然结果不错,但是我还是想做得更好。于是,我开始研究可以提高分数的优化方法。结果我果然找到了一个,它叫遗传算法。在把它应用到超市销售问题之后,最终我的分数在排行榜上一下跃居前列。

![{w:100%}{w:100}{w:100}{w:100}](/

更新时间:2024-12-31 08:29

基于OpenFE的期货因子挖掘

引言

在量化交易与数据科学领域,特征工程是一个至关重要的步骤,直接影响到模型的预测能力与效果。OpenFE 是一个开源的特征工程框架,旨在帮助研究人员和工程师快速生成高质量的特征。然而,原始版本的 OpenFE 算子虽然功能强大,但在某些应用场景下仍存在一定的局限性。为了更好地满足我们在量化研究中的需求,我对 OpenFE 算子进行了重新构建,丰富衍生特征生成;并将其与 XGBoost 相结合,用于特征重要性评估,方便后续标的打分。

本文将详细介绍这一重构过程,并通过实际案例展示如何使用这一改进后的算子生成衍生特征,并使用 XGBoost 进行特征重要性评估,从而优化我们的量化模型。

更新时间:2024-12-24 06:43

【指标定制】线性回归预测上涨概率是否合理?

线性回归模型和上涨概率预测

代码中使用线性回归模型预测特征:

IF(m_lead(close, 5) / m_lead(open, 1) - 1 > 0, 1, 0) AS label

但是特征label只有0,1两个值和特征进行训练,使用linearRegression是不是不合理,训练集中的label也只有两个值,那预测集的label结果能用么?

[https://bigquant.com/codesharev3/12ee99fc-3c41-46bd-bdb0-7d0993d0f845](https://bigquant.com/codeshar

更新时间:2024-11-25 01:45

零基础《AI挑战虚拟股票预测大赛》入门教程

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-06-12 06:00

监督式机器学习算法的应用:择时

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


\

导语

《Machine Learning for Stock Price Forecasting》是Ali El-Shayeb撰写的机器学习系列文章 ,本文主要介绍其第二部分内容——《监督式机器学习算法的应用》,并将其思想和代码应用在中国股票市场,开发出具有择时功能的监督式机器学习算法,最后进行策略回测。对此感兴趣的小伙伴可以直接在

更新时间:2024-06-12 05:57

因子(特征)工程是什么

导语

近年来,国内量化投资迎来了发展的黄金期,但涉及机器学习的量化投资还比较少。机器学习领域的大神Andrew Ng(吴恩达)老师曾经说过机器学习很大程度上就是特征工程,因此本文主要介绍下特征工程在量化投资领域的应用。


特征工程是什么?

有这么一句话在业界广泛流传: 数据和特征决定了机器学习的上限。那特征工程到底是什么呢?顾名思义,其本质是一项工程活动,目的是最大限度地从原始数据中提取特征以供算法和模型使用。简单理解为:特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。

**特征工程在量化投资领域有非常适宜的土壤,

更新时间:2024-06-12 01:44

利用 gplearn 进行特征工程

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-06-12 01:41

AI量化策略,我该如何理解你?

人工智能(AI)技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此开发AI量化策略可以理解为将机器学习应用在量化投资领域。

理解机器学习算法

机器学习算法太多,本文讨论只针对适用于金融数据预测的常用有监督型机器学习(Supervised Machine Learning)算法:StockRanker。假设我们要去预测某个连续变量$ Y$未来的取值,并找到了影响变量$ Y$取值的$K$ 个变量,这些变量也称为特征变量(Feature Variable)。机器学习 即是要找到一个拟合函数$f(X_1,X_2,\ldots,X_K|

更新时间:2024-06-11 03:20

71st Meetup

选取了IC较高的因子后,如何合成一个策略,一般步骤是什么

在因子开发研究完之后,选取了|IC|较高的几个因子后,一般如何合成一个策略,即在工程方法论上的一般步骤是什么?比如应该如何选择哪些模型进行合成(树模型or深度学习模型,是否有规律),分别是否都必须在训练前进行特征工程的处理再训练(去极值、中性化去除相关性),比如是否需要探查各个因子的相关性(如果多个因子存在一定的相关性,一般相关度大于多少需要进行处理,是否需要逐对特征两两取残差)

\

“水中行舟”研报如何用dai的SQL方式来实现?

方正的==“水中行舟”研报==中提到“取市场上所有股票在当日“不分化时刻”的成交额序列

更新时间:2024-06-07 10:55

特征取分位数据

2021年7月8日Meetup模板:

https://bigquant.com/experimentshare/4fa50659ea5340188b574e288c0f9903

\

更新时间:2024-06-07 10:55

如何构建高频的订单流与成交量分布因子

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-06-07 10:55

数据正态分布或方形分布对训练的准确性的影响

问题

在机器学习中策略中,数据正态分布或方形分布对训练的准确性产生重要影响吗?如果有,有什么方法处理呢?

视频

https://www.bilibili.com/video/BV1jT4y1R7wc?share_source=copy_web

\

更新时间:2024-06-07 10:55

算法那么多,如何给策略选择最佳的算法?

\

作者

徐耀杰(woshisilvio)

常见算法优劣比较

算法没有最好,只有更好。 这个问题的答案取决于许多因素,例如股票市场的条件,数据集的质量和特征工程的有效等。接下来,我们来看看这些算法的优势和劣势:

  1. 神经网络:适用于复杂的非线性问题,可以有效地捕捉市场的非线性特征和复杂关系。
  2. 决策树:适用于数据量较小、特征维度较少的情况,可以很好地解释模型的决策过程。
  3. 随机森林:适用于处理高维度、复杂数据集,具有很好的鲁棒性和准确性。
  4. 支持向量机:适用于数据量较小、特征维度较高的情况,可以有效地处理非线性和线性可分问题。

正常情况下,在处理少量的股票量

更新时间:2024-06-07 10:55

深度学习在期货高频上的应用

8月19日Meetup问题模板:

https://bigquant.com/experimentshare/f58dbfb388454407b8a2b99eb14cf1ea

\

更新时间:2024-06-07 10:55

分页第1页第2页第3页
{link}