本文14323字,阅读约28分钟
导语:本文旨在用精炼的语言阐述实操层面的机器学习量化应用方法,包括给出实践中一些常见、实际问题的处理方案,并结合了量化应用实例。读完后大家可以在本平台进行实践检验。
1.人工智能量化投资概述
2.人工智能技术简介
3.机器学习在量化投资中应用的具体方法解析
AI相对于传统量化投资的优势 传统的量化投资策略是通过建立各种数学模型,在各种金融数据中试图找出市场的规律并加以利用,力所能及的模式或许可以接近某一个局部的最优,而真正的全局“最优解”或许在我们的经验认知之外。如同不需要借助人类经验的Alpha Zero,不仅
更新时间:2025-01-09 10:19
几天前,我着手解决一个实际问题——大型超市销售问题。在使用了几个简单模型做了一些特征工程之后,我在排行榜上名列第 219 名。
虽然结果不错,但是我还是想做得更好。于是,我开始研究可以提高分数的优化方法。结果我果然找到了一个,它叫遗传算法。在把它应用到超市销售问题之后,最终我的分数在排行榜上一下跃居前列。
![{w:100%}{w:100}{w:100}{w:100}](/
更新时间:2024-12-31 08:29
在量化交易与数据科学领域,特征工程是一个至关重要的步骤,直接影响到模型的预测能力与效果。OpenFE 是一个开源的特征工程框架,旨在帮助研究人员和工程师快速生成高质量的特征。然而,原始版本的 OpenFE 算子虽然功能强大,但在某些应用场景下仍存在一定的局限性。为了更好地满足我们在量化研究中的需求,我对 OpenFE 算子进行了重新构建,丰富衍生特征生成;并将其与 XGBoost 相结合,用于特征重要性评估,方便后续标的打分。
本文将详细介绍这一重构过程,并通过实际案例展示如何使用这一改进后的算子生成衍生特征,并使用 XGBoost 进行特征重要性评估,从而优化我们的量化模型。
更新时间:2024-12-24 06:43
线性回归模型和上涨概率预测
代码中使用线性回归模型预测特征:
IF(m_lead(close, 5) / m_lead(open, 1) - 1 > 0, 1, 0) AS label
但是特征label只有0,1两个值和特征进行训练,使用linearRegression是不是不合理,训练集中的label也只有两个值,那预测集的label结果能用么?
[https://bigquant.com/codesharev3/12ee99fc-3c41-46bd-bdb0-7d0993d0f845](https://bigquant.com/codeshar
更新时间:2024-11-25 01:45
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-06-12 06:00
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
\
《Machine Learning for Stock Price Forecasting》是Ali El-Shayeb撰写的机器学习系列文章 ,本文主要介绍其第二部分内容——《监督式机器学习算法的应用》,并将其思想和代码应用在中国股票市场,开发出具有择时功能的监督式机器学习算法,最后进行策略回测。对此感兴趣的小伙伴可以直接在
更新时间:2024-06-12 05:57
近年来,国内量化投资迎来了发展的黄金期,但涉及机器学习的量化投资还比较少。机器学习领域的大神Andrew Ng(吴恩达)老师曾经说过机器学习很大程度上就是特征工程,因此本文主要介绍下特征工程在量化投资领域的应用。
有这么一句话在业界广泛流传: 数据和特征决定了机器学习的上限。那特征工程到底是什么呢?顾名思义,其本质是一项工程活动,目的是最大限度地从原始数据中提取特征以供算法和模型使用。简单理解为:特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。
**特征工程在量化投资领域有非常适宜的土壤,
更新时间:2024-06-12 01:44
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-06-12 01:41
人工智能(AI)技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此开发AI量化策略可以理解为将机器学习应用在量化投资领域。
机器学习算法太多,本文讨论只针对适用于金融数据预测的常用有监督型机器学习(Supervised Machine Learning)算法:StockRanker。假设我们要去预测某个连续变量$ Y$未来的取值,并找到了影响变量$ Y$取值的$K$ 个变量,这些变量也称为特征变量(Feature Variable)。机器学习 即是要找到一个拟合函数$f(X_1,X_2,\ldots,X_K|
更新时间:2024-06-11 03:20
更新时间:2024-06-07 10:55
在机器学习中策略中,数据正态分布或方形分布对训练的准确性产生重要影响吗?如果有,有什么方法处理呢?
https://www.bilibili.com/video/BV1jT4y1R7wc?share_source=copy_web
\
更新时间:2024-06-07 10:55
在因子开发研究完之后,选取了|IC|较高的几个因子后,一般如何合成一个策略,即在工程方法论上的一般步骤是什么?比如应该如何选择哪些模型进行合成(树模型or深度学习模型,是否有规律),分别是否都必须在训练前进行特征工程的处理再训练(去极值、中性化去除相关性),比如是否需要探查各个因子的相关性(如果多个因子存在一定的相关性,一般相关度大于多少需要进行处理,是否需要逐对特征两两取残差)
\
方正的==“水中行舟”研报==中提到“取市场上所有股票在当日“不分化时刻”的成交额序列
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-06-07 10:55
\
徐耀杰(woshisilvio)
算法没有最好,只有更好。 这个问题的答案取决于许多因素,例如股票市场的条件,数据集的质量和特征工程的有效等。接下来,我们来看看这些算法的优势和劣势:
正常情况下,在处理少量的股票量
更新时间:2024-06-07 10:55
更新时间:2024-05-24 10:28
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
预计算因子表[数据平台] https://bigquant.com/data/datasources/cn_stock_prefactors
https://bigquant.com/wiki/doc/dai-PLSbc1SbZX
[ht
更新时间:2024-05-20 06:21
更新时间:2024-05-20 02:09
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
\
https://bigquant.com/experimentshare/723e10568f294571924b89f3953ce20b
\
更新时间:2024-05-20 01:02
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-17 10:35
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-17 07:25
策略源码:
{{membership}}
已经更新到了AIStudio3.0.0版本, 请转移至
https://bigquant.com/wiki/doc/xgboost-I1ZKSVykGR
https://bigquant.com/codeshare/a290e569-7680-45d7-86be-f6c81c18a1e6
\
更新时间:2024-05-16 09:16
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-16 01:58
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-15 09:50
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-15 08:18