本报告中采用多因子量化的手段,期望能够对股票的下跌风险有一个准 确的测度,给投资者在投资决策时衡量股票风险提供一个新的视角。
我们通过 VaR 风险测量方法,对股票中各维度的因子进行分析,并挑选 有效的因子构建多因子模型,通过模型对股票的未来最大跌幅进行定量 分析,从而获得股票未来下跌风险的测度结果。
VaR 应用指数预测:整体趋势来看,指数不断下滑,沪深
更新时间:2023-06-01 14:28
本报告包含有色金属行业择时和有色金属行业内多因子选股两个模型。择时 模型使用宏观和行业的基本面数据,分为绝对收益和相对收益两种情况。选 股模型为多因子模型针对单一行业的细化研究。
有色金属行业择时模型
利用均值 T 检验的方法得到获取绝对收益的有效择时因子,包括 PMI、消费 者信心指数、城镇可支配收入、M0 同比、社会融资规模、十种有色金属产 销量当月同比、有色金属采矿业主营业务收入同比、有色金属采矿业固定 资产投资完成额同比,择时策略相对基准的年化收益率由 6.18%增加到 7.72%,择时策略的最大回撤为 23.85%,而基准的最大回撤为 82.17%。
更新时间:2023-06-01 14:28
在多因子量化选股系列报告中,我们已经撰写了一系列基础技术因子并对 其进行有效性检验,本篇报告从换手率、非流动性和量价信息结合这几个 方面继续挖掘新的技术因子。
换手率是指在一定的时间内市场中股票转手买卖的频率,是反映股票流通 性强弱的一个指标。本篇报告研究了换手率稳定性因子、换手率变异系数 因子、异常换手率因子。在中证 500 股票池内,换手率稳定性_12 个月、换 手率变异系数_12 个月因子的表现较好。
非流动性指标通过成交额对绝对收益的影响,来衡量股票交易对市场的冲 击,用于刻画股票的非
更新时间:2023-06-01 14:28
本篇报告通过引入分域研究的理念,对传统多因子模型研究体系进行了当时拓展,并构建了相应的研究分析框架与投资策略。
分域研究解决的是传统线性预测模型对市场非线性特征刻画的不足,也是量化与基本面结合的有效途径,通过对各行业、板块投资逻辑的量化建模,可以使得模型更贴近市场本质投资逻辑,更加精确的发掘有效投资机会。我们通过采用全域风险调整后子域相关系数统计的检验方式,并以12大类189个小类因子为基础因子库,通过对宽基域、板块域、行业域的比较分析,找到了各个股票域内的核心驱动因素,也对各个行业、板块之间的区别进行了有效梳理。
在分域阿尔法模型的基础上,我们分别构建了沪深300成分股增
更新时间:2023-06-01 14:28
本篇报告的因子由两部分组成:常规因子与银行专项因子。我们将分别使用两个类型的因子构建模型,并在2016年至2018年4月的历史数据中回测模型获得alpha的能力以及稳定性。
经过因子初筛以及相关性检验,常规因子我们选取了流通
更新时间:2023-06-01 14:28
本文针对《行业中的超额收益探索》的研究成果进行了扩展,并在此基础上提出了一种动态检验因子有效性并选股的方法。通过2010~2016年的数据检验发现该方法在除综合行业外的其他行业里都可以选出超越行业收益的股票,各期行业选出的股票组合超越行业收益的比例在60%~65%之间,最大超额收益率达到189.2%,表明该方法在这一期间选股比较有效。应用2010~2016年统计的最优参数在2017~2019年的选股效果较差,对数据分析和检验发现该方法对股票未来收益的预测开始大幅衰减,原本持有两个月有效的时间已经衰减为一个月的时间,各类风格因子整体失效比较明显,在股票选择上的效果变差。
更新时间:2023-06-01 14:28
本文测试 6 种因子合成方法,发现最大化IC_IR及最大化IC法效果较好
因子合成是构建多因子选股模型的重要环节,可以提取出一组因子内的重要信息。本文对6种因子合成方法进行测试,从单因子测试结果看,最大化IC_IR及最大化IC法合成的因子效果较好,能大概率战胜等权复合因子。从复合因子稳定性看,除等权法外,主成分分析法得到的第一主成分复合因子最稳定。
因子合成的应用场景主要为降低因子共线性以及生成大类风格因子
因子合成的应用场景主要有两方面: 1. 将共线性比较严重的因子先进行合成,再进行多元回归,可提升回归问题的准确性; 2. 将同一风格大类下的几个
更新时间:2023-06-01 14:28
一方面,分行业建模能够更方便的加入行业特质因子,另一方面,由于不同行业特性不同,分行业建模预测准确度可能更高。基于上述两个原因,我们尝试构建行业内选股模型,期望该方法能够对原有的全市场模型有所改进。
行业内适用因子的寻找有很多不同的方法,但我们在研究过程中发现基于纯测试的方法和基于纯逻辑的方法都存在一定的问题,因此我们采用了测试和逻辑相结合的方法。由于行业成份股较少,缺乏大样本的显著性,对于每一个因子,我们
更新时间:2023-06-01 14:28
游凛峰先生,21年证券从业经历,多年海外投研经验,2009年加入工银瑞信基金,目前负责公司量化投资。深耕基本面量化投资多年,通过主动选行业+多因子量化选股,探索具有潜力的细分行业中的优质股票,注重自由现金流和盈利质量的匹配程度,实现“盈利稳定+最大化”。目前整体偏均衡成长风格,偏好配置持续高增长的行业,获取行业配置收益;个股盈利质量高,自由现金流等指标表现较优,长期业绩表现优秀。
基金经理:游凛峰先生,21年证券从业经历,2009年加入工银瑞信基金,目前负责公司量化投资,在管基金共7只,总管理规模约33.5亿元。海外投研经验丰富,深耕基本面量化投资多年,历史业绩表现优秀。
!
更新时间:2022-11-02 09:32
本报告为多因子选股系列研究的第四篇,在对原模拟组合进一步分析的基础上构建了行业中性模拟组合,并提出了一种简单可行的指数增强策略,主要有以下贡献。本文的主要贡献:
更新时间:2022-09-23 08:07
传统多因子选股
在国内A股市场,传统的多因子量化选股模型得到了广泛的应用,在实际表现中,传统的多因子模型在过去几年中也表现出较为稳定的超额收益率。但随着传统多因子模型应用越来越广泛,历史长期有效的因子逐渐失效,对新因子的挖掘提出了迫切的需求。
新因子挖掘
传统的因子指标挖掘主要集中于财务报表、个股中低频率的价量等相关的数据维度,而这部分数据维度的增量价值的挖掘已逐渐饱和,需从其他新的数据维度中挖掘新的因子指标,本篇报告从个股日内高频数据出发尝试挖掘出新的因子指标。
基于个股高频数据的因子构建
本篇专题结合个股在微观市场结构中的特征,采用LSV模型
更新时间:2022-09-01 13:07
多因子选股模型的整个投资流程包括alpha模型的构建,风险模型的构建,交易成本模型的构建,投资组合优化过程以及组合业绩的归因分析。从国内市场上已公开的量化模型看,采取的大多是打分法选股或者行业、市值分层构建组合,这种组合构建方式缺乏对风险和alpha的精确控制,最终组合可能偏离预定的投资目标。
多因子结构化风险模型(如Barra, Axioma)目前仍然是市场上的主流风险模型。股票收益率的样本协方差矩阵面临的主要问题是:在股票数量N超过时间样本区间T时,协方差矩阵不可逆,并且包含着较大的估计误差,这些都会严重影响到投资组合优化,使得优化器给出错误的权重分配。
根
更新时间:2022-08-30 09:49
IC系数(InformationCoefficient)在测试单因子有效性方面扮演着举足轻重的作用在传统的多因子选股模型当中,IC系数在测试单因子有效性方面扮演着举足轻重的作用,它用来评判一个因子区别股票优劣的能力以及决定最终该因子在构建alpha组合时分配的权重。有关IC系数及其衍生指标有很多,最常见的有两种,即:PearsonIC和SpearmanrankIC。
传统多因子模型中的IC系数测算结果与组合构建之间的衔接不够紧密传统多因子模型中的IC系数测算结果与组合构建之间的衔接不够紧密。一般的逻辑认为如果因子IC系数越大,那么用因子值排名靠前的股票构成的组合在未来预期超额
更新时间:2022-08-25 07:32
本文基于组合对称交叉验证(CSCV)框架,以三组量化研究为案例展示回测过拟合概率(PBO)的计算流程,发现两组多因子选股模型的PBO较低,择时模型的PBO较高。案例1为7种机器学习模型的多因子选股策略,指数增强组合PBO大多在15%~50%,“XGBoost表现最佳”的结论大概率不是回测过拟合。案例2为6种交叉验证方法的多因子选股策略,多空组合PBO在20%~50%,“分组时序交叉验证表现最佳”的结论大概率不是回测过拟合。案例3为双均线50ETF择时策略,PBO在50%~90%,“参数组合[11,30]和
更新时间:2022-05-05 09:17
基于CSCV框架计算三组量化研究案例的回测过拟合概率
本文基于组合对称交叉验证(CSCV)框架,以三组量化研究为案例展示回测过拟合概率(PBO)的计算流程,发现两组多因子选股模型的PBO较低,择时模型的PBO较高。案例1为7种机器学习模型的多因子选股策略,指数增强组合PBO大多在15%~50%,“XGBoost表现最佳”的结论大概率不是回测过拟合。案例2为6种交叉验证方法的多因子选股策略,多空组合PBO在20%~50%,“分组时序交叉验证表现最佳”的结论大概率不是回测过拟合。案例3为双均线50ETF择时策略,PBO在50%~90%,“参数组合[11,30]和\
更新时间:2021-11-26 07:30
本报告为多因子选股系列研究的第四篇,在对原模拟组合进一步分析的基础上构建了行业中性模拟组合,并提出了一种简单可行的指数增强策略,主要有以下贡献。本文的主要贡献:
更新时间:2021-11-25 10:11
本报告在因子分析与筛选的基础上,选取了有效且稳健的因子并赋予合理权重,构建了多因子综合打分选股模型,结果表明模型取得了出色的效果,并具有较高的稳健性和实用性。
本文的创新之处
更新时间:2021-11-25 10:11