见贤思齐焉。当我们在研究为什么有些基金表现优异的时候,我们总想知道这些目标基金到底在哪些因子上有所暴露,对目标基金因子暴露的研究有利于投 资者构建自己的投资组合。传统方法是根据公募基金的定期报告中的持仓数据来 计算基金在某些因子上的暴露度,但是由于定期报告发布时间存在较长滞后,这 种传统方法在实际使用中也存在较长时滞。我们尝试使用基金净值序列和因子收 益序列来反推基金在某因子上的暴露度走势。使用 LSTM 算法进行计算,经过一 系列测试,取得了一些初步成果。
对于基金在各因子上的暴露度迁移的研究,有利于我们对目标基金进行研究。 不管是对基金进行因子业绩归因还是波动率拆解,都需要
更新时间:2023-06-01 14:28
文献来源:Chow, Tzee-Man, Feifei Li, and Yoseop Shim. "Smart beta multifactor construction methodology: Mixing versus integrating." The Journal of Index Investing 8.4 (2018): 47-60.
推荐原因:我们的研究主要集中在一个实际问题上,这个问题在此之前关注度较低:市场参与者如何在权衡后选择采用不同方法构建的多因子投资组合作为投资工具。具体来说,我们研究和比较了两种不同的方法。第一种方法(以下称为整合法),是在
更新时间:2023-06-01 14:28
风险模型有三个功能:控制风险暴露、估计收益率协方差矩阵、绩效归因。不是所有功能都要用到风险因子,估计协方差矩阵可以采用纯统计方法,报告把这个领域最新学术成果和业界常用的因子模型在A股进行了实证对比。
由于股票数量多,收益率样本数量少,样本协方差矩阵的估计误差比较大,导致其矩阵条件数(最大特征值除以最小特征值)较高,输入组合优化器进行数值求解时会让结果对数据误差十分敏感。压缩估计方法即是去调整样本协方差矩阵的特征值,压缩其分布区间,同时降低估计误差。我们之前研究中一直采用线性压缩方法(LS),报告里新测试了Ledoit(2017)提出的非线性压缩估计(NLS)。
因
更新时间:2023-06-01 14:28
文献来源:Vyas, K., and Van Baren, M. 2021. Should equityfactors be betting on industries? The Journal of Portfolio Management 48(1),73–92.
推荐原因:资产管理公司越来越多地将非传统股票因子应用于选股。这些因子存在不同程度的行业暴露。部分选股因子会因行业暴露获取更高的超额收益,而有些则会降低收益。本文评估了价值、质量、动量、低波和规模等五大投资风格中的21个选股因子的行业配置效率。结果表明,同一投资风格的不同选股因子在行业配置上的回报表现出显著
更新时间:2023-06-01 14:28
HML因子中的细节
文献来源: Clifford Asness andAndrea Frazzini, 2013, The Devil in HML’s Details, The Journal of Portfolio Management, volume 39 number 4.
推荐原因:Fama 和 French标准的价值(B/P)度量方法是一个合理的、保守的选择,对这个领域起到了很好的作用。但这不是最好的选择。本文对B/P计算指标的时效性进行了研究,会对组合投资策略的有效性产生很大的影响,时效性越强的B/P在使用价值和动量对策略做风险调整
更新时间:2023-06-01 14:28
文献来源:Dopfel, Frederick E., and Ashley Lester. "Optimal blending of smart beta and multifactor portfolios." The Journal of Portfolio Management 44.4 (2018): 93-105. 推荐原因:随着机构投资者增加对smart beta基金的配置,以及多因子投资方法带来的复杂性提升,投资者们需要一个smart beta产品组合的配置指引。在设计一个多样化和高效的投资组合时,需考虑到因子的偶发性敞口和特殊敞口。因此,本文开发了一个标准框架,以
更新时间:2023-06-01 14:28
上篇报告我们提出的协方差矩阵谱分解近似方法可以兼顾统计模型的高效便捷和因子模型的组合优化提速,不过其中K值(保留的最大特征值数量)的设定比较偏经验,本报告通过数学推导给出了此方法近似误差上限的简洁表达式,并基于此动态调整K值,保证理论一致性,同时可以在不显著影响策略表现的条件下,实现组合优化过程的大幅提速。
压缩估计量方法是基于个股收益率在时间序列上独立同分布的假设,对近期市场变化反应迟钝。我们借鉴CCC-Garch 模型的思想,设计了一套波动率调整方案,可以让压缩估计量对近期市场变化更加敏感。用波动率调整后的风险模型可以降低策略跟踪误差和回撤。
跟踪误差惩罚项可
更新时间:2023-06-01 14:28
稳健优化的逻辑:组合优化问题要求投资者输入每只个股的预期收益, 使用因子模型对个股预期收益进行预测不可避免会导致一定的偏差,为 了降低收益预测偏差对最终策略绩效的影响,我们介绍了两类稳健优化 问题,其基本思想是:找出可能发生的最糟糕的情形,然后最大化该情 形下策略的期望收益。
在实证环节,本文验证了不同参数设置下,稳健优化对中证 500 指数增强策略的影响,结果显示,两类稳健优化问题都可以显著降低策略的换手率;当原本已经施加了较为严格的跟踪误差限 制及个股主动仓位上下界限制时,稳健优化对于策略绩效的提升有限, 而当约束条件较
更新时间:2023-06-01 14:28
因子是驱动投资组合风险和收益的主要来源,无论在学术界还是在投资界,因子都被广泛研究。因子投资(Factor Investing)主要围绕如下三个部分展开。 因子模型(Factor Models)帮助投资者理解和管理组合风险的来源。 因子策略(Factor Strategies)帮助投资者捕捉因子收益带来的溢价。 因子配置(Factor Allocation)帮助投资者在不同的资产类别之间进行配置,单个资产类别则充当工具型产品。
进化(Evolution)
基本面因子经久不衰的成功,得益于他们既有学术理论的支撑,又有实证经验的支持,重要的是他们还能够反映实际的投资决
更新时间:2023-06-01 14:28
如题,
如何在代码中获取因子值?
谢谢
更新时间:2023-06-01 14:26
更新时间:2022-11-20 03:34
本篇是“学海拾珠”系列第七十六篇,本期推荐的海外文献开发了一种运用主成分分析法(PCA)从股票收益中提取公共定价因子的方法,使用该方法,作者得到了三个定价因子,它们相比当前使用的主流因子模型在横截面收益解释程度方面表现更好。回到A股市场,基于主成分分析法的因子模型有助于更深入了解股票特征因子在横截面中定价中的联动效应,将具有超额收益的因子分离出来。
模型分为两步构建:第一步,对多个可以预测未来股票收益的特征变量(如公司规模,账面市值比,动量等)进行Fama MacB
更新时间:2022-10-31 10:56
本篇是“学海拾珠”系列第七十篇,本期推荐的海外文献研究了双重调整法下的基金业绩评价,传统基金业绩评价往往使用因子模型来计算风险调整后的alpha,或使用基于持仓特征的方法来计算基准组合收益后进行风险调整,但最新的资产定价文献发现,两种方法可能都不完整,虽然基金的因子载荷和持仓特征是相关的,但相关性并不高,表明因子载荷和持仓特征并没有传达完全相同的信息。在控制风险因子暴露后,持仓特征依然可以解释共同基金的横截面alpha,因此,作者提出了基于双重调整法的基金业绩评价。回到国内基金市场,我们可以运用类似的方法计算双重调整
更新时间:2022-10-13 10:18
本周各因子波动较小,总体呈现小量回撤趋势。其中流动性因子、动量因子表现相对较好,收益分别为-1.00%和0.17%;量价因子以及成长因子收益表现较差,分别为-1.24%和-3.15%。
量化模型统计显示,本周动动量因子优选股票主要集中行业为电子信息、房地产以及化工行业;盈利因子优选股票主要集中行业为金融行业和能源行业;量价因子优选股票主要集中行业为电子器件、电子信息;成长因子优选股票主要集中行业为酿酒行业;流动性因子优选股票主要集中行业为金融以及电力行业。
统计数据显示,流动性因子采用风险中性权重搭配生成的投资组合Beta值最高;量价因子采用风险中性权重搭配生成的投资组合Be
更新时间:2022-10-12 02:34
研究背景
被动管理基金通常密切复制跟踪指数的投资组合。完全复制指数策略在很多情况下由于指数权重变化产生的股票交易成本,以及较小权重股票的流动性成本,导致成本高昂。部分指数复制的方法能够极大降低交易和流动性成本,因此在实践中被普遍使用。
部分复制指数方法介绍
简单选择:根据特定选择标准对成分股排名,选择排名最高固定数量的成分股构建组合,缺点是可能无法完全复制指数。优化选择:通过解决具有条件约束的优化问题来选择跟踪投资组合中的资产,缺点是模型复杂并且计算量很大,可能包含冗余资产。覆盖指数结构:通过分层抽样和分层聚类等方法选择资产来模拟指数结构,缺点是
更新时间:2022-10-12 02:33
更新时间:2022-10-09 11:05
文献来源:Jennifer Bender, Jerry Le Sun and Rick Thomas, Asset Allocation vs. Factor Allocation – Can We Build a Unified Method?[J] The Journal of Portfolio Management, 2018, 45 (2) 9-22
推荐原因:近60年间,股票和债券等资产一直是多元化投资组合的主要基石。长期以来,投资者普遍认为,对不同类别的资产进行分散投资足以为组合带来多元化投资的裨益,但近期在市场大幅下挫过程中,对不同类别资产进行分散投
更新时间:2022-10-09 10:01
文献来源:Jeffrey A Busse, Lei Jiang, Yuehua Tang, Double-Adjusted Mutual Fund Performance[J]. The Review of Asset Pricing Studies, 2020.
推荐原因:通过因子模型进行风险控制后,基金收益在横截面上仍与股票特征显著相关。我们提出了一种新的双重调整方法,在业绩指标中同时控制因子模型贝塔和股票特征。新的衡量标准对业绩排名产生了重大影响,四分之一的基金百分位排名变化超过10。双重调整后的业绩佐证了基金相对业绩的可持续性。基于新方法的推断与传统方法常常
更新时间:2022-08-31 09:14
文献来源:Blitz, David. Hanauer, Matthias. Settling the Size Matter: The Journal of Portfolio Management Quantitative Special Issue 2021, 47 (2) 99-112.
推荐原因:规模溢价自被发现已有近四十年,然而规模因子的alpha一直很微弱,但是当控制质量因子(quality-versus-junk)暴露时,因子似乎又恢复了活力。本文发现,在美国市场,规模因子对质量因子回归后呈现出非常显著的alpha,然而超额收益主要由质量因子的空头端驱动,
更新时间:2022-08-31 08:46
文献来源:Chow, Tzee-Man, Feifei Li, and Yoseop Shim. "Smart beta multifactor construction methodology: Mixing versus integrating." The Journal of Index Investing 8.4 (2018): 47-60.
推荐原因:我们的研究主要集中在一个实际问题上,这个问题在此之前关注度较低:市场参与者如何在权衡后选择采用不同方法构建的多因子投资组合作为投资工具。具体来说,我们研究和比较了两种不同的方法。第一种方法(以下称为整合法),是在
更新时间:2022-08-31 06:05
\
更新时间:2022-08-31 02:48
文献来源:Dopfel, Frederick E., and Ashley Lester. "Optimal blending of smart beta and multifactor portfolios." The Journal of Portfolio Management 44.4 (2018): 93-105. 推荐原因:随着机构投资者增加对smart beta基金的配置,以及多因子投资方法带来的复杂性提升,投资者们需要一个smart beta产品组合的配置指引。在设计一个多样化和高效的投资组合时,需考虑到因子的偶发性敞口和特殊敞口。因此,本文开发了一个标准框架,以
更新时间:2022-08-30 09:45
\
更新时间:2022-08-25 02:16
因子选择的新指标本文将因子模型的最大夏普比平方作为资产定价模型的评价指标,在嵌套模型和非嵌套模型中分别进行深入研究。嵌套模型是资本资产定价模型,和French(1993)的三因子模型,和French(2015)的五因子扩展模型,以及增加动量因子的六因子模型。非嵌套模型考察了六因子模型中因子选择的三个问题:(1)构建盈利能力因子时应当选择现金盈利因子亦或是经营盈利因子;(2)多空溢价因子与单边超额收益因子的对比;(3)仅大(小)规模股票池与所有股票池中因子表现的对比。
目标日期基金是对DC计划中传统均衡配置型基金的补充,其主要设计思路是根据投资者的
更新时间:2022-07-27 10:36
**关子敬:**在我看来海内外最主要的差别是:国内投资人是偏向喜欢直接对股价做预测,而海外直接预估股价比较少,主要做填充模型(imputation model),针对遗失数据做估算,特别是在
更新时间:2022-04-27 01:48