\
更新时间:2024-05-15 02:10
\
更新时间:2024-05-15 02:10
更新时间:2024-05-15 02:10
欢迎您来到BigQuant!
BigQuant是一个人工智能量化投资平台,平台内聚集了各类人工智能量化开发者、订阅者和学习者。
如果您是一位充满好奇心的学习者,在BigQuant您可以前往:
与知识经验丰富的讲师团队,通过线上+线下的方式,学习AI量化入门、因子构建分析、AI量化实践、实战等,纵观全局获得AI量化全貌,由浅入深进阶成为量化大神。 ,发布了Deep Alpha-CNN模型,该模型采用7层一维卷积神经网络,并引入残差,降低模型复杂度,防止梯度爆炸/消失,达到更好收敛。
1、7层的卷积神经网络表现好于2层,能够学习到更多的市场特征。
2、研究发现当kernel size、batch size、feature map等参数越小,模型表现
更新时间:2023-06-29 08:42
\
更新时间:2023-06-29 06:56
\
更新时间:2023-06-27 03:23
私募排排网最新数据显示,截至6月14日,百亿级量化私募数量已经超过30家。从业绩表现来看,据私募排排网统计,截至6月2日,今年以来量化多头股票私募产品平均收益率5.13%,正收益占比80.06%,同期主观多头股票私募产品平均收益率1.59%,正收益占比48.68%。
沪上某百亿量化私募表示,以前高频股票多头量化策略年换手率为200倍至300倍,行业高速发展后,高频策略换手率逐渐降至100倍左右,其中百亿级量化私募换手率大多集中在30倍左右。因此,目前量化投资对于市场波动的影响较有限。
在业内人士眼中,量化投资对市场的影响几何尚难准确判断,但从长期来看,主观与量化投资并非“水火不容”,目前多
更新时间:2023-06-15 09:34
由宽邦科技、华泰证券、朝阳永续、金融阶、华锐技术、NVIDIA等共同发起的《2022中国量化投资白皮书》全国研讨会于2023年4月至5月,分别在上海、北京、深圳、香港成功举办研讨会与投融资交流会议。
上海、北京、深圳场三地活动共计发表主题演讲与圆桌研讨42个议程;在香港场投融资交流会上,有16家管理人与海外投资人及代销机构进行了闭门沟通交流。系列活动累计吸引了超2000家各类型机构,4097人次报名。
四地活动聚集了包括宽邦科技、华泰证券、朝阳永续、金融阶、华锐技术、NVIDIA、紫光晓通、因诺资管、宽投资产、艾方资产、锐天投资、玄元投资、天演投资、倍漾量化、杉树资本、迈德瑞中国、九坤投资
更新时间:2023-06-15 03:19
乖离率指标(Bias):
所需数据和参数:Bias(close,nDay,threshold )
指标伪码:
MAVAL:=MA(CLOSE,nDay);
BIAS:=100*(CLOSE-MAVAL)/MAVAL;
/wiki/static/upload/21/210c8875-0828-4472-a65c-1ee21ec1bfec.pdf
\
更新时间:2023-06-13 06:53
身处大数据时代,我们所面对的数据的维度在不断增加。传统的量化投资模型基于财务报表及市场价量信息构建因子,信息来源相似性较高导致模型趋同、交易拥堵。在互联网中,非传统金融数据(如舆情、搜索量、语文文本)不断积累,这其中就包括许多对投资有用的信息。
相较于传统的金融数据,互联网舆情数据可以及时地描述投资者的情绪面。众多数据源中,舆情搜索指数反映了众多投资者对某类信息的关注情况,本文将众多投资者对大小盘的舆情搜索情绪作为投资者情绪的直接代理变量,以此来研究大小盘风格轮动与舆情变化的强弱之间的关系。投资者情绪随
更新时间:2023-06-13 06:53
报告摘要:条件随机场模型及股市择时思路自1988年,西蒙斯成立了大奖章基金并在多次股灾中取得稳定的收益后,纯技术量化型的投资策略开始受到投资者的广泛关注,而机器学习正是这种技术量化型策略的中坚力量。目前使用较为成熟的模型之一是隐马尔可夫模型HMM,其与条件随机场是一对“生成判别对”。相比起HMM,条件随机场具有更加灵活等优点。事实上,条件随机场(Conditional Random Field,CRF)是描述给定一组输入随机变量条件下另一组输出变量的条件概率分布的模型。基于条件随机场,我们可以建立观测指标值和走势状态及走势状态与走势状态之间复杂的函数依赖关系,从而,当给定新的观测
更新时间:2023-06-13 06:53
量化投资的本质是借用计算机将传统投资的逻辑定量化,并具有纪律性、程序化等优势。量化投资主要分为两个大方向,选股以及择时,分别决定了买卖的标的与时点,而量化选股则又包括了多因子选股、行业轮动、事件驱动等策略。量化策略的前提假设是历史会重复,而多因子选股则提炼出那些能够长期具备择股能力的因素,并加以整合。 多因子模型从历史数据分析,挑选出能够长期有效甄别出未来高收益股票的因子,并构建模型。在多因子选股时,股票的规模、估值、盈利水平、成长能力、过去的市场表现等等都将体现在量化模型中进行综合的判断。在不同的市场环境中,模型中的因子会有不同的表现,但整体提供
更新时间:2023-06-13 06:53
\
更新时间:2023-06-13 06:50
DeepAlpha系列报告旨在从基础量价数据中,借鉴深度学习模型,应用于量化投资领域。学习模型包括:全连接深度网络(DNN)、卷积神经网络(CNN)、长短期记忆网络(LSTM)、对抗生成网络(GAN)、ResNet、TabNet,同时报告将引入自然语义识别NLP领域近年热门算法如BERT、Transformer、GPT、XLNet等,尝试构建各类DeepAlpha模型。
本篇文章通过传统机器学习算法对相同的量价因子进行实验,方便与深度学习模型进行对比。
随机森林属于集成学习的一种,通过集成学习的Bagging思想将多棵树集成的一种算法:它的基本单
更新时间:2023-06-07 08:34