更新时间:2024-01-09 02:04
这几年跟着别的老师学习价值投资,抱着实现自动交易的目的,误打误撞接触了量化这个领域,
发现这个领域的人的都是高人,自己按照价值投资的思路,每年能拿到百分之十左右的利润就很不错了,但量化领域里面的大神都在研究每年60-70%的收益,甚至一个月翻倍…
跟武侠小说里面的藏经阁一样,扫地僧随便丢一本秘籍给你你就能横扫江湖一大半的人了…
从别的平台看到机器学习很厉害,一直没招到入门的方法,编程也不懂,就一直找地方学习,最后来到了big quant,里面资料很多,天天拿到策略改个日期看看回测,学习效果不理想
伟人说过,实践出真知,
想在这里做个计划,一步步去实现自己的想法看看能做到什么程度,
更新时间:2023-12-29 11:31
如下图,只拿到了全市场3568个数据。
更新时间:2023-12-29 10:57
更新时间:2023-12-29 10:56
DeepAlpha系列报告旨在从基础量价数据中,借鉴深度学习模型,应用于量化投资领域。学习模型包括:全连接深度网络(DNN)、卷积神经网络(CNN)、长短期记忆网络(LSTM)、对抗生成网络(GAN)、ResNet、TabNet,同时报告将引入自然语义识别NLP领域近年热门算法如BERT、Transformer、GPT、XLNet等,尝试构建各类DeepAlpha模型。
本篇文章通过借鉴传统机器学习算法——XGBoost——对相同的量价因子进行实验,方便与深度学习模型进行对比实践。
XGBoost 是在 Gradient Boosting(梯度提升)框架
更新时间:2023-12-07 06:50
DeepAlpha系列报告旨在从基础量价数据中,借鉴深度学习模型,应用于量化投资领域。学习模型包括:全连接深度网络(DNN)、卷积神经网络(CNN)、长短期记忆网络(LSTM)、对抗生成网络(GAN)、ResNet、TabNet,同时报告将引入自然语义识别NLP领域近年热门算法如BERT、Transformer、GPT、XLNet等,尝试构建各类DeepAlpha模型。
本篇文章通过传统机器学习算法对相同的量价因子进行实验,方便与深度学习模型进行对比。
随机森林属于集成学习的一种,通过集成学习的Bagging思想将多棵树集成的一种算法:它的基本单
更新时间:2023-12-02 14:12
QuantChat是由BigQuant基于QuantLLM研发的下一代金融投资交互体验工具,依托于BigQuant平台大规模能力,内嵌于BigQuant平台以AI为核心的Cloud IDE——AIStudio,主要应用于量化投资领域。
QuantChat可以与用户进行自然语言交互,在多个领域都有广泛的应用。它可以用于回答常见问题、提供技术支持、解决用户的疑问,甚至可以进行智能对话和提供娱乐,但其不同于其他对话交互应用的功能在于提供有关量化投资方面的信息、建议和帮助。QuantChat基于强大的机器学习算法
更新时间:2023-10-11 02:05
新手想问一下在trade运行中,这个错误是什么意思,需要在什么地方改正
\
更新时间:2023-10-09 07:12
更新时间:2023-10-09 07:10
像一些复杂的因子合成方法怎么实现呢,有没有相关的算子模块或者代码分享呢
更新时间:2023-10-09 07:09
三种构建大盘风控指标的方法关于LSTM+CNN的模型进行大盘风控的策略代码未找到,能否提供一下,谢谢。
https://bigquant.com/wiki/doc/dapan-zhibiao-fangfa-MoB3kNcAMG
更新时间:2023-10-09 06:28
根据官网《如何对AI量化策略进行管理?三步走》(https://bigquant.com/wiki/doc/celve-FeqcyLgLeU),并参考
【模板案例】(https://bigquant.com/community/t/topic/194074)策略组合
在将两个策略合在一起时报错,请问如何解决?
\
NameError Traceback (most recent call last) <ipython-input-20-6aeba62465a8> in <module> 1 M3 = M.
更新时间:2023-10-09 06:09
https://bigquant.com/wiki/doc/xinhao-fangfa-oxACTyy7MT我看到知识库里有个大神有这个再次分类提高选股策略的方法。但是,在测试集中把return_5_day=(shift(close_0, -5)-shift(open_0, -1))/shift(open_0, -1)给当作特征写进去了啊,这岂不就是用了未来函数么?还是说我理解错了
更新时间:2023-10-09 06:06
更新时间:2023-10-09 03:41
消息在股票交易中有很大的影响力,如果没有对消息的处理会导致策略经常中雷,怎么办呢?
更新时间:2023-10-09 03:28
更新时间:2023-10-09 03:26
更新时间:2023-10-09 02:20
具体怎么调用这些因子
更新时间:2023-10-09 02:18
AIStudio是BigQuant平台以AI为核心的Cloud IDE,可以用于量化投资数据分析、因子挖掘、模型训练、回测和交易,以及更广泛的程序开发和AI模型开发训练等。
/wiki/static/upload/31/315c1087-6d07-491a-90ef-43e717997077.mp4
\
更新时间:2023-09-07 03:12
{{membership}}
https://bigquant.com/codeshare/25fee71f-dcef-4fe4-a8a1-75bf511d9466
[ https://bigquant.com/codeshare/79b84aec-5eeb-4218-8c38-67e06f477216]( https://bigquant.com/codeshare/79b84ae
更新时间:2023-08-30 03:28
研报:
{{membership}}
https://bigquant.com/codeshare/38ef8568-518b-4756-98f0-8dd8722d01e5
[https://bigquant.com/codeshare/942d320a-c17f-4061-9e56-d24e3a0ac472](https://bigquant.com/
更新时间:2023-08-07 05:52
222
更新时间:2023-07-21 03:16
12月7日,BigQuant发布年度重磅报告(https://bigquant.com/wiki/doc/niandu-zhongbang-bao-DeepAlphaCNN-juanji-shenjingwangluo-qXe3iEgfRI),发布了Deep Alpha-CNN模型,该模型采用7层一维卷积神经网络,并引入残差,降低模型复杂度,防止梯度爆炸/消失,达到更好收敛。
1、7层的卷积神经网络表现好于2层,能够学习到更多的市场特征。
2、研究发现当kernel size、batch size、feature map等参数越小,模型表现
更新时间:2023-06-29 08:42
\
更新时间:2023-06-29 06:56
\
更新时间:2023-06-27 03:23