如下午14点50,判断是否涨停,没涨停就卖出 这种
更新时间:2025-02-16 03:31
更新时间:2025-02-16 03:28
更新时间:2025-02-16 02:26
如图:
更新时间:2025-02-16 02:15
一个小小的需求:可以提供十年期国债收益率和社融数据吗?
\
更新时间:2025-02-16 02:01
更新时间:2025-02-16 01:58
https://bigquant.com/aistudio/studios/a29733f8-0f37-11ed-93bb-da75731aa77c/?folder=/home/aiuser/work
更新时间:2025-02-16 01:43
更新时间:2025-02-16 01:40
# 回测引擎:每日数据处理函数,每天执行一次
def m19_handle_data_bigquant_run(context, data):
#...
# 2. 生成卖出订单
print(f'{today} before cash:{context.portfolio.cash}')
if cash_for_sell > 0:
for instrument in sell_instruments:
res = context.order_target(context.symbol
更新时间:2025-02-16 01:40
请教一下,用1000多个股票一年的收益率数据和20个因子做多元回归模型,这里有多只股票和多个日期,应该要怎么处理呢?如何预测股票收益率?
更新时间:2025-02-16 01:31
更新时间:2025-02-15 15:34
根据官网《如何对AI量化策略进行管理?三步走》(https://bigquant.com/wiki/doc/celve-FeqcyLgLeU),并参考
【模板案例】(https://bigquant.com/community/t/topic/194074)策略组合
在将两个策略合在一起时报错,请问如何解决?
\
NameError Traceback (most recent call last) <ipython-input-20-6aeba62465a8> in <module> 1 M3 = M.
更新时间:2025-02-15 14:55
最好更细粒度的, 比如分钟级别。
好像没找到。 求例子。
更新时间:2025-02-15 14:15
更新时间:2025-02-15 14:09
更新时间:2025-02-15 13:40
更新时间:2025-02-15 12:40
2/3光速对你我来说可能只是一瞬,但对于高频交易公司来说,可能就是事业的全部。在瞬息万变的市场上,棋先一招常常就在微秒之间。
眨眼 0.4 秒,常被形容快,但有家公司花了 1400 万美元,就为了让自己再快 0.07 毫秒( 0.00007 秒),5700 分之一眨眼的时间。
Jump Trading 公司在全球最大期货交易所芝加哥商品交易所数据中心对面,买了一块 12 万平方米的空地。
买了之后,他们没盖楼炒房,也不是为了风水,就是架微波通信基站,用于第一时间把交易请求传到芝加哥商品交易所。
:
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平台:
https://bigquant.com/data/home
https://bigquant.com/wiki/doc/dai-PLSbc1SbZX
新版表达式算子:
<https://
更新时间:2025-01-09 10:22
来源:SSRN 作者:Sophie Emerson, Ruairi Kennedy, Luke O’Shea, and John O’Brien
机器学习是人工智能的一个子领域,它使用统计技术为计算机模型提供从数据集学习的能力,允许模型在没有显示编程的情况下执行特定任务。近年来,机器学习技术激增,人们对其在金融领域的应用也越来越感兴趣。在投资管理中,已被应用于新闻的情绪分析、趋势分析、投资组合优化、风险建模等。那么,机器学习在量化投资中有哪些潜在应用呢?
1.常见的机器学习算法
机器学习算法主要有三种:监督学习、无监督学习和强化学习。监督学习是在已知输入和输出的情况下训练出一个模型,将
更新时间:2024-12-11 08:16
\
更新时间:2024-06-12 06:06
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
\
《Machine Learning for Stock Price Forecasting》是Ali El-Shayeb撰写的机器学习系列文章 ,本文主要介绍其第二部分内容——《监督式机器学习算法的应用》,并将其思想和代码应用在中国股票市场,开发出具有择时功能的监督式机器学习算法,最后进行策略回测。对此感兴趣的小伙伴可以直接在
更新时间:2024-06-12 05:57
本篇报告详尽地介绍了基于人工智能的阿尔法策略框架,包括基于AI技术在策略研究上的阶段性的工作和成果,并提供完整代码,读者可克隆策略,复现效果和继续改进。 希望本文能帮助读者拓展研究思路,应用AI来做更好的量化策略研发,把人工智能的能力赋予更多的投资者 (Democratize AI to empower investors)。
\
本篇报告构建了一个完整的可复用的 人工智能阿尔法策略框架。
本篇报告用AI对基本面、财务、交易型等 282个因子 做了单因子策略研究和多个维度上的绩效分析,并 **发掘了在短、中、长周期上多个夏普比率超过1.5 、年化收益超过 30
更新时间:2024-06-12 05:53
在2022年7月22日上市交易的中证1000股指期货是2022年的金融市场一件大事,公募私募基金又多了一份对冲工具,指数增强和alpha策略更能施展拳脚。本文介绍如何获取中证1000的代码和行情数据。
https://bigquant.com/experimentshare/c77ca255831943a68ad9baa34f0248a2
如果想获取中证500的代码和行情,只需改下名称就行:
:
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-06-07 10:55