机器学习

机器学习在金融领域的应用日益广泛,为金融业务的智能化提供了强大动力。它运用算法和模型,自动从海量数据中学习和提取有用信息,无需人工进行复杂编程。在金融风控方面,机器学习技术可帮助银行、保险公司等机构更准确地识别欺诈行为,降低信贷风险。在投资策略上,通过对历史数据的深度学习,机器能预测市场走势,为投资者提供更精准的建议。同时,机器学习还能优化客户服务,例如通过聊天机器人提供24小时在线咨询,或根据客户行为数据提供个性化金融产品推荐。总的来说,机器学习不仅提升了金融业的效率和智能化水平,也在重塑我们的金融生态。

机器学习:10-朴素贝叶斯

  • 运行环境:AIStudio 3.0

  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/86ef92ba-f91f-46fa-a6d3-d7b2207e741b](https://bigquant.com/codeshare/86ef92ba-f91f-46fa-a6d3-d7

更新时间:2024-04-25 07:40

机器学习:9-KNN

  • 运行环境:AIStudio 3.0

  • 机器学习:KNN算法

  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:


\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/4fbd0eb2-8eec-4d43-b9bb-5aa4596d847a](https://bigquant.com/codeshare/4fbd0eb2-8e

更新时间:2024-04-25 07:40

机器学习:6-索套回归

  • 运行环境:AIStudio 3.0.0
  • 机器学习:索套回归
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:


\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/7e2cc9bf-0dea-4201-8b94-ad465750eec8](https://bigquant.com/codeshare/7e2cc9bf-0de

更新时间:2024-04-25 07:40

机器学习:5-岭回归

  • 运行环境:AIStudio 3.0.0
  • 机器学习:岭回归策略
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/af49fa20-ce4a-4f8f-b88c-d413035fe309](https://bigquant.com/codeshare/af49fa20-ce4a

更新时间:2024-04-25 07:40

机器学习:4-线性回归构建因子

  • 运行环境:AIStudio 3.0.0
  • 线性回归:构建因子+单因子策略回测
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/cd8638d7-21c0-4df4-8a29-e9f1cc227df0](https://bigquant.com/codeshare/cd8638

更新时间:2024-04-25 07:38

机器学习:3-逻辑回归预测上涨概率

  • 运行环境:AIStudio 3.0.0
  • 机器学习:逻辑回归策略:预测上涨概率
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:

\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/b2a658f9-e445-422b-95f9-b57a50e23562](https://bigquant.com/codeshare/b2a65

更新时间:2024-04-25 07:38

机器学习:2-线性回归预测上涨概率

  • 运行环境:AIStudio 3.0.0
  • 机器学习:线性回归策略:预测上涨概率
  • 策略说明:==本代码以教学目的为主,请自行调参==


回测图:


\

策略源码:

{{membership}}

[https://bigquant.com/codeshare/3c3165db-d37e-4c8a-90f6-8af10855fb18](https://bigquant.com/codeshare/3c3

更新时间:2024-04-25 07:38

量化机器学习系列分享(六)无监督学习常见算法

1. 无监督学习之聚类算法

1.1 聚类方法简介

聚类算法是一种无监督学习算法,它和监督学习任务下的分类算法是有明显对比的

  • 监督学习的分类算法:数据属于哪一个类别是有标签定义的,模型有没有分类正确我们也是可以明显评判出来的
  • 无监督学习的聚类算法:数据没有明确的标签表明类别,聚类的正确与否、好与坏,都是很难评价的

聚类算法的目的,是将数据集中的数据,划分为不同的类别,但是这个类别没有标签去衡量

  • 目的可能是为了人为地将数据按照特征归类,比方说数据集中的个体,我想按照身高和体重,分出胖和瘦的区别来
  • 目的可能是为了探寻数据背后的隐藏标签,比方说数据集中的个体,我在采

更新时间:2024-01-10 11:34

量化机器学习系列分享(三)逻辑回归与优化方法

1. 逻辑回归

1.1 分类问题的定义

分类问题的标签是离散型的变量,我们的目的是用特征,来预测标签归属于几个类别当中的某一种

  • 如果是预测标签属于两个类别当中的哪一种,就叫二分类问题,比方说预测股票明天是涨,还是不涨,两个类别
  • 如果是预测标签属于多个类别当中的哪一种,就叫多分类问题,比方说预测股票明天是涨,还是跌,还是不涨不跌,还是涨停,还是跌停,五个类别

本次分享我们主要讨论二分类问题

对于二分类问题,我们需要把定性的类别,转换为定量的数字,来让计算机理解类别的概念

  • 一种做法是将一个分类定义为1,另一个分类定义为0,比方说预测股票明天是涨,还

更新时间:2024-01-10 03:19

量化机器学习系列分享(二)模型评估与特征选择

1. 模型评估

1.1 偏差与方差

上次分享我们提到过,模型的好坏评价标准,是模型在测试集上的预测是否准确,好比一个学生在期末考试当中拿高分才是学的好

模型在测试集上的预测误差(Error),可以分为三种来源

  • 偏差(Bias):高偏差的模型表现为:

    对于一个预测样本,不仅预测不准,而且如果模型再训练一遍,还是同样地预测不准

    好比我们期待一个同学期末考90分,但是他只考了50分,如果再给他一次机会,重学一遍再参加考试,他还是考了50分,距离90分一直很远

  • 方差(Variance):高方差的模型表现为:

    对于一个预测样本,

更新时间:2024-01-10 03:19

量化机器学习系列分享(四)更多种类的分类模型

我们今天分享的四种模型,包括上次分享的逻辑回归,都是一些轻量级的分类模型,适用于数据量少,特征量少的分类任务

\

1. 支持向量机(SVM)

1.1 SVM的概念

支持向量机(Support Vector Machine)是在神经网络流行之前最强大的机器学习算法

SVM在二分类问题上的逻辑原理是:

  • 假设我们的样本中有两个类别,我们可以把样本画到图上
  • 如果切一刀下去,怎样切可以尽可能地把两个类别尽可能地分开

比方说以下图像中

![](/wiki/api/attachments.redirect?id=620959a3-ac1c-4a55-ab93-cd1

更新时间:2024-01-10 03:19

量化机器学习系列分享(五)树模型与组合模型

nan1. 决策树模型

1.1 决策树模型的概念

决策树是机器学习中的一个典型的非参数模型,它使用规则,而不是参数,来定义模型

  • 这种决策方式其实是和人类最直接的思考方式是类似的
  • 例如,我们使用身高这一特征,去预测性别这一标签的时候,一个比较直觉的方式是,如果身高大于 175 就分类为男生,如果身高小于 175 就分类为女生

以下是一个典型的决策树模型:使用三个特征:X1,X2,X3;预测一个标签 Y

  • 图中的圆圈和

更新时间:2024-01-09 11:51

如何在机器学习中提取因子看板的因子?

https://bigquant.com/codeshare/5ac99434-07e0-427e-a834-c965114ced20

输入特征列表模块只能通过因子表达式提取运算预计算因子,如果想引入因子看板中的因子该怎么在可视化中操作呢?

比如想添加alpha_ta_0041换手率相对波动率这个因子,https://bigquant.com/alpha/detail/alpha_ta_0041

是通过预计算因子在特征列表模块中重新构建

更新时间:2024-01-02 06:07

文章回测报错:华泰研报:在XGboost中实现关于有序回归作为损失函数和评价函数

https://bigquant.com/college/courses/course-v1:public+2023110601+110601/courseware/7708009442174480802b3dd339f4ede0/45dafc16ea744216af376a7dc2961fa5/

老师您好,

我学习上面的视频文章,想试运行代码,但运行不下去,没办法回测,是我哪里没有配置对吗?谢谢老师!

  • \

    
    
    # 我们取前0.6的数据量作为训练集
    date = data['date'].unique

更新时间:2023-12-08 08:18

dai+optuna+vectorbt编写CTA策略并调参

https://bigquant.com/codeshare/0ffb5755-3b0a-4e5f-95d8-4d37e9d5fac0


https://bigquant.com/codeshare/77aeff8a-3028-44b5-93ec-68867a08466d

\

更新时间:2023-11-13 02:45

如何把次日开盘数据加入策略?

如何把次日开盘数据加入策略?比如竞价金额,竞价成交量。开盘涨幅。

更新时间:2023-10-17 01:36

平台的机器学习模型输出结果如何排序?

机器学习给股票排序,如果我要获得买预测前5或者预测后5的的股票,该怎么写代码。 {w:100}如上图,我用了图形化LightGBM模型,我怀疑我买错了方向,请教该怎么改平台默认的代码?

更新时间:2023-10-09 08:27

如何基于平台的xgboost,自定义目标函数呢?

自己通过import xgboost可以实现自定义目标函数,但是和平台的xgboost模块相比,自己的import xgboost比平台的xgboost模块慢了很多,时间花费几乎是30倍差距。

那么,如何基于平台的xgboost,实现自定义目标函数的定义呢?


\

更新时间:2023-10-09 07:41

lightGBM机器学习报错

前6天所有收盘价小于5日均线,当天收盘价大于5日均线,用lightGBM机器学习报错,请工程师帮忙看看

https://bigquant.com/experimentshare/1e0957b2a15649908418415d073b0dc0

\

更新时间:2023-10-09 07:34

两种机器学习回归算法在金融的应用

#逻辑回归

这也称为 logit 回归。逻辑回归是一种基于过去数据预测事件二元结果的分析方法。

当因变量是定性的并且取二进制值时,它被称为二分变量。

如果我们使用线性回归来预测这样的变量,它将产生 0 到 1 范围之外的值。此外,由于二分变量只能取两个值,残差不会围绕预测线呈正态分布。

Logistic 回归是一种非线性模型,它产生一条逻辑曲线,其中值限制为 0 和 1。

将此概率与阈值 0.5 进行比较,以决定将数据最终分类为一个类别。因此,如果一个类的概率大于 0.5,则将其标记为 1,否则标记为 0。

金融中逻辑回归的用例之一是它可以用来预测股票的表现。

#分位数回归

更新时间:2023-10-09 07:12

用财务因子怎么构建机器学习策略?

\

更新时间:2023-10-09 07:09

stockranker训练时出错的问题

{w:100} {w:100}

更新时间:2023-10-09 06:35

用财务因子怎么构建机器学习策略

{w:100} {w:100}

本策略就在stockranker模板策略上改了些因子,标注没改

计算收益:5日收盘价(作为卖出价格)除以明日开盘价(作为买入价格) shift(close, -5) / shift(open, -1)

怎么就只有一个因子体现出来,其它财务因子等在模型上体现不出

更新时间:2023-10-09 06:32

如何在随机森林里面使用自定义因子进行回测

随机森林的例子里是使用特征列表里面已有的预计算因子作为因子添加的, 请问 不是预计算的因子 或者是一些自定义的因子 如何去作为输入源输入到随机森林里面 请技术大佬指点一下

\

更新时间:2023-10-09 03:32

有期货相关的AI策略吗?

求一个范例,谢谢

更新时间:2023-10-09 03:24

分页第1页第2页第3页第4页第5页第13页
{link}