算法交易

算法交易是金融领域的技术革新,它利用高级数学模型和复杂算法来快速、准确地分析和解读市场动态,以制定并执行交易策略。这些算法能够在毫秒级别内对市场数据做出反应,远超人脑的处理速度。算法交易为金融行业提供了一个精细控制风险的途径。包括定点交易、套利交易和趋势跟踪等多元化策略的应用,有效提高了交易的准确性和效率。其背后的智能化系统可24小时不间断地监控市场,捕捉交易机会,大大减轻了人工作业负担,同时,极大地提升了在多变金融市场中的适应能力和盈利能力。更重要的是,由于大部分决策基于预定规则和数据模型,算法交易显著降低了情绪化决策的风险。然而,也需注意到,过度依赖算法可能导致失去对市场直觉的把握,并且在极端市场情况下,算法可能失效,导致不可预见的风险。总体而言,算法交易以其快速、精准和高效的特性,逐渐成为现代金融市场的核心竞争力。

一文了解算法交易策略:类型、步骤、建模思路和实施

算法交易策略简单来说就是用计算机语言(如 Python)编码的策略,用于执行交易订单。交易者将这些策略编码,以利用计算机的处理能力,以更高效的方式进行交易,几乎不需要干预。

无论你是初学者还是经验丰富的交易者,跟随这个指南踏上算法交易策略的旅程。它旨在赋予你必要的知识,帮助你在交易中取得成功。

从动量交易和套利,到做市和机器学习驱动的高频交易,我们通过实际案例和真实世界的交易算法应用进行学习。我们将探讨如何在实时市场中实施自动化交易系统,并且深入研究算法交易中的风险管理、优化技术、算法交易策略的回测以及数据获取等内容。

这个全面的指南是你值得依赖的资源,提供了专家驱动的见解,讲解简单明了

更新时间:2025-01-16 08:18

什么是自动交易

自动化交易是一种利用自动化系统执行交易订单的方法,速度更快。凭借你在交易领域的专业知识,你可以将交易方法自动化,而不是手动执行交易。在这篇博客中,你将了解有关自动化交易方法的一切,并开始学习如何入门。

内容大纲

  • 什么是自动化交易?
  • 自动化交易的历史
  • 自动化交易的工作原理
  • 自动化交易与算法交易的区别
  • 传统经纪模式与新经纪模式的区别
  • 自动化交易和算法交易的例子
  • 实践自动化交易的前提条件
  • 学习自动化交易的资源
  • 构建自动化交易系统的步骤
  • 自动化交易的优势
  • 自动化交易的缺点

什么是自动化交易?

自动化交易使用计算机根据算法生成交

更新时间:2025-01-16 08:16

【历史文档】高阶技巧-月度调仓_可视化编程示例

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平台:

https://bigquant.com/data/home

https://bigquant.com/wiki/doc/dai-PLSbc1SbZX

新版表达式算子:

<https://

更新时间:2025-01-09 10:22

机器学习量化投资实战指南

本文14323字,阅读约28分钟

导语:本文旨在用精炼的语言阐述实操层面的机器学习量化应用方法,包括给出实践中一些常见、实际问题的处理方案,并结合了量化应用实例。读完后大家可以在本平台进行实践检验。

文章概览:

1.人工智能量化投资概述

2.人工智能技术简介

3.机器学习在量化投资中应用的具体方法解析

AI相对于传统量化投资的优势 传统的量化投资策略是通过建立各种数学模型,在各种金融数据中试图找出市场的规律并加以利用,力所能及的模式或许可以接近某一个局部的最优,而真正的全局“最优解”或许在我们的经验认知之外。如同不需要借助人类经验的Alpha Zero,不仅

更新时间:2025-01-09 10:19

股票市场数学:算法交易的基本概念

为什么需要学习股票市场的数学?

  • 人们常常会思考为什么需要理解和学习股票市场的数学。
  • 学习股票市场数学的必要性是什么?
  • 我在哪里可以学习股票市场中数学的应用?
  • 股票市场数学的基础是什么?
  • 在学习股票市场数学时,应该关注哪些概念?

许多人希望从数学角度学习算法交易。各种数学概念、统计学和计量经济学在股票市场交易中发挥着重要作用,为你的股票交易提供优势。

以下是我们在本文中涵盖的有关股票市场数学的完整列表:

  • 股票市场数学是什么?
  • 算法交易概述
  • 算法交易为什么需要数学?
  • 数学在交易中何时以及如何流行起来:历史之旅
  • 股票市场的数学概念
    • 描述

更新时间:2025-01-08 11:35

算法交易指南

谁可以读?

本书是为了任何想要了解算法交易领域的人而写的。根据我们的经验,我们想象中的读者将是:

● 大学生

● 科技专业人士

● 不同类型的业余交易者(例如,专业交易者,或者喜欢积极管理个人投资组合的业余爱好者)

● 任何渴望了解更多关于应用量化金融的人

有什么先决条件吗?

我们假设读者没有编程背景。虽然不必要对金融、数学或计算机科学有了解,但如果对这些领域有任何/一些/全部有适度的掌握,将会更容易阅读这本书。

内容大纲

  1. 金融交易简史:介绍了金融交易的历史,从1602年荷兰东印度公司的股票交易开始,到现代金融市场的发展。
  2. **

更新时间:2024-12-31 10:35

量化交易模型及策略2023版

量化交易利用数学和统计学方法来分析市场并执行交易的过程,是现代金融的一个重要组成部分。量化模型的目的是通过算法自动识别并利用市场中的规律和机会,用以获取更多收益。

量化交易模型的一般由以下几个部分组成:

1 数据处理模型: 量化交易的基石是数据。这包括了从历史价格、成交量到公司财报、宏观经济指标等各类数据。对这些数据的收集、清洗和处理是构建有效模型的首要步骤。**[BigQuant策略编写平台](ht

更新时间:2024-12-05 02:12

129-多空对冲的AI期货策略

策略简介

该策略为期货多空对冲策略,做多的同时也做空,赚取Alpha对冲收益,信号由算法产生。

标的

商品期货合约

信号产生

将股票市场的成熟算法StockRanker应用在期货市场,根据StockRanker算法预测未来1小时商品期货的涨跌,做多涨幅排序第1的期货品种,做空涨幅排序倒数第1的期货品种。

回测频率

1分钟K线

案例详情

输入特征模块,利用表达式构造特征,过滤条件来筛选期货。因为加工的是分钟频因子,因此读取分钟表。注意,m1和m2都是输入特征模块,都需要读取cn_future_bar1m的数据。

![](/wiki/api/at

更新时间:2024-08-22 03:07

Word2Vec系列



\

更新时间:2024-06-12 06:06

零基础《AI挑战虚拟股票预测大赛》入门教程

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-06-12 06:00

10大统计技术

无论你如何看待数据科学这门学科,都不能轻易忽视数据的重要性,以及我们分析、组织和理解数据的能力。Glassdoor 网站收集了大量的雇主和员工的反馈数据,发现在美国“25个最好的工作职位清单”中排名第一的是数据科学家。尽管排名摆在那里,但毫无疑问,数据科学家们研究的具体工作内容仍会不断增加。随着机器学习等技术变得越来越普遍,像深度学习这样的新兴领域获得了来自研究人员、工程师以及各大公司更多的关注,数据科学家会继续站在创新浪潮之巅并且推动技术的不断发展。

尽管拥有强大的编码能力非常重要,但数据科学也并非全部都是关于软件工程的(事实上,能够熟练掌握python已经足够很好的开展工作了)。数据科学

更新时间:2024-06-12 05:51

量化投资

导语

1989年发表的论文《The Fundamental Law of Active Management》及其随后的相关论文揭示了寻求主动投资的alpha收益的数量化关系,这为主动组合投资管理带来一套令人信服的分析框架,这个数量化关系很好揭示了数量化技术(量化投资)可以如何或者应该如何切入投资管理领域。

和被动组合管理(passive porfolio management)相比,主动组合管理(active porfolio management)更显投资水平的能力,或者说运气。被动投资力求完全复制相应的基准成分股及其权重,所以每当某指数做成分股的调整时,新入选的股票

更新时间:2024-06-12 02:56

AI量化策略,我该如何理解你?

人工智能(AI)技术得到了飞速发展,其在各个领域的运用也不断取得成果。机器学习被评为人工智能中最能体现人类智慧的技术,因此开发AI量化策略可以理解为将机器学习应用在量化投资领域。

理解机器学习算法

机器学习算法太多,本文讨论只针对适用于金融数据预测的常用有监督型机器学习(Supervised Machine Learning)算法:StockRanker。假设我们要去预测某个连续变量$ Y$未来的取值,并找到了影响变量$ Y$取值的$K$ 个变量,这些变量也称为特征变量(Feature Variable)。机器学习 即是要找到一个拟合函数$f(X_1,X_2,\ldots,X_K|

更新时间:2024-06-11 03:20

获利盘函数、筹码理论中,是否可以取到 股指IF、IC、IH的值?

更新

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU


预计算因子表[数据平台] https://bigquant.com/data/datasources/cn_stock_prefactors

https://bigquant.com/wiki/doc/dai-PLSbc1SbZX

[http

更新时间:2024-06-07 10:55

2023-AI量化Meetup

\

更新时间:2024-06-07 10:55

2022-AI量化Meetup导览

\

更新时间:2024-06-07 10:55

机器学习应用于底部反转策略的表现

问题

《机器学习应用于底部反转策略的表现》

视频

https://www.bilibili.com/video/BV1Jd4y1g7Gi/?vd_source=ecd29bbd04cbefdfa426167c55241973&t=1.3

\

策略源码

详见上述链接

更新时间:2024-06-07 10:55

策略中调用其他因子_非AI

2021年4月22日Q1&Q2问题:

策略案例


https://bigquant.com/experimentshare/d50c07db9f7f45168dd745027c04b6d8

\

更新时间:2024-06-07 10:55

AI量化大赛获奖策略分享《龙头战法实盘-中证150增强》

视频

https://www.bilibili.com/video/BV11S4y197md?share_source=copy_web

策略源码

龙头战法实盘+AI-量化大赛NO.3-中证150增强[策略分享]

更新时间:2024-06-07 10:55

高频回测算子使用(HFTrade)

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-06-07 10:55

情绪周期中涨跌停数、最高板数等代码编写

问题

35th Meetup提到的情绪周期中最高板数,涨停家数,跌停家数,昨日涨停今日表现(赚钱效应)等具体代码的编写。

\

视频

https://www.bilibili.com/video/BV1nT4y1q7Ut/

策略源码

[https://bigquant.com/experimentshare/224aa4076333436ea5a570694376631a](https://bigquant.com/experimentshare/224aa40763334

更新时间:2024-06-07 10:55

【主题分享】市场风格变化时策略如何自动切换

策略源码

A:市场风格变化时策略如何自动切换

更新时间:2024-06-07 10:55

storanker模型同时买入因子最大和最小

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-06-07 10:55

国泰君安alpha191中的count、regbeta、regresi三个函数

问题

国泰君安alpha191中的count、regbeta、regresi三个函数怎么定义?

视频

https://www.bilibili.com/video/BV1ov4y1Z7Yg?p=2&share_source=copy_web

\

策略源码

# 国泰君安 Count(a, n),过去5天close_0 > close_1 的天数
conditions = where(close_0

更新时间:2024-06-07 10:55

LSTM+CNN深度学习预测股价

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

策略案例

https://bigquant.com/experimentshare/c13d6baefe5d4c75bb87eea9364b0f75

\

更新时间:2024-06-07 10:55

分页第1页第2页第3页第4页第5页第6页第7页第8页第9页
{link}