有哪些合理的大盘风控方案?
https://www.bilibili.com/video/BV1TF41167ph?share_source=copy_web
[https://bigquant.com/experimentshare/07791ba8fc354d4e9793ce963a735263](https://bigquant.com/experimentshare/07791ba8fc354d4e9
更新时间:2024-06-07 10:55
\
更新时间:2024-06-07 10:55
有什么方法或因子可以描述股价在高位或低位?
https://www.bilibili.com/video/BV1ov4y1Z7Yg?share_source=copy_web
[https://bigquant.com/experimentshare/9fa4d332095143b598308c57de203788](https://bigquant.com/experimentshare/9fa4d33
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
[https://www.bilibili.com/video/BV1Z94y1Q73b?share_source=copy_web&vd_source=2e7dc1240ea373ea6eba1134af8dd086](https://www.bilibili.com/video/BV1Z94y1Q73b?share_source=copy_web&vd_source=2e7dc1240
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
【此文档为旧版策略】具体可参考新版文档:
https://bigquant.com/wiki/doc/103-ai-LpsqDhu8mG
https://bigquant.com/experimentshare/dd9cff01459a41f9be40d7e660164795
\
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
请教catboost的详细使用方法,对于原先使用xgboost或者stockranker的策略,如何用catboost替换掉xgboost或者stockranker?
https://www.bilibili.com/video/BV1US4y1n79r/?spm_id_from=333.999.0.0
[https://bigquant.com/experimentshare/c2422c6678a8
更新时间:2024-06-07 10:55
备注:本策略含有未开放的数据,故克隆之后无法运行。
{{membership}}
https://bigquant.com/codeshare/b6e80d6b-f5e0-4778-97cf-77fcadb7b488
\
更新时间:2024-06-07 10:55
本文为旧版实现,仅供学习参考。
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
预计算因子表[数据平台] https://bigquant.com/data/datasources/cn_stock_prefactors
https://bigquant.com/wiki/doc/dai-PLSbc1SbZX
[http
更新时间:2024-06-07 10:55
\
更新时间:2024-06-07 10:55
更新时间:2024-06-07 10:55
量化交易利用数学和统计学方法来分析市场并执行交易的过程,是现代金融的一个重要组成部分。量化模型的目的是通过算法自动识别并利用市场中的规律和机会,用以获取更多收益。
量化交易模型的一般由以下几个部分组成:
1 数据处理模型: 量化交易的基石是数据。这包括了从历史价格、成交量到公司财报、宏观经济指标等各类数据。对这些数据的收集、清洗和处理是构建有效模型的首要步骤。**[BigQuant策略编写平台](http
更新时间:2024-06-07 10:48
更新时间:2024-06-06 10:40
本策略是一个基本的StockRanker策略,使用的因子除了一些基本的量价指标、技术指标、财务指标之外,我们加入了涨跌停的因子,由于涨跌停price_limit_status这个字段的含义是等于1表示跌停、等于2表示非涨跌停、等于3表示涨停,因此我们将过去10日的涨跌停状态相加的话,值越大就表示涨停次数越多。
在StockRanker模型上,由于数据量的增加,我们适当的调整了模型参数:叶节点数量、每叶节点最小样本数、树的数量,以避免模型欠拟合。
模型训练时间为2015-2022年,回测时间为2023-2024年,策略持股5支,等权重,持仓5天
[htt
更新时间:2024-06-03 06:51
这是旧版的例子, 只能在2.0.0的Aistudio中运行
https://bigquant.com/experimentshare/54fe864132a7447894540d70cd2e36e5
\
更新时间:2024-05-24 11:02
freestyle996+如何运用股票标注的方法对1-3日内上涨的股票进行标注?
https://www.bilibili.com/video/BV1uP4y1R7kh/?spm_id_from=333.999.0.0
[https://bigquant.com/experimentshare/0a4bb333c1bb4f4e91d7701a3538f6f4](https://bigquant.co
更新时间:2024-05-21 09:10
更新时间:2024-05-20 07:35
更新时间:2024-05-20 07:21
本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明
新版量化开发IDE(AIStudio):
https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW
新版模版策略:
https://bigquant.com/wiki/doc/demos-ecdRvuM1TU
新版数据平
更新时间:2024-05-20 07:17