股票市场

股票市场,是金融体系中至关重要的组成部分,它提供了一个平台,使得公司能够通过发行股票筹集资金,同时投资者可以在此买卖股票,寻求资本的增值。在股票市场中,价格的波动反映了市场对未来公司业绩的预期,同时也体现了宏观经济环境和市场情绪的变化。这个市场不仅为企业融资创造了机会,也为投资者提供了多元化的投资选择和风险管理的工具。然而,由于其高度敏感性和不确定性,股票市场也充满了挑战和风险,投资者需要深入研究,明智决策。

基金研究:基金风格择时能力可持续性的探究 天风证券_20180206

摘要

研究风格择时能力的意义在经历了2016年底的风格转换之后,投资者越来越关注基金选择风格的能力。本文就股票仓位较高的两种基金——普通股票型和混合偏股型,讨论哪些基金和基金经理有选择风格的能力,以及这种能力是否有持续性。

通过比较业绩排名的方法研究基金经理风格选择能力以市值为例,对股票市场的风格进行划分,统计每次风格切换时点前后业两个月内绩排名均靠前的基金和基金经理,并分析这些基金和基金经理在未来的风格切换时点前后业绩排名是否还在前列。在10位过去表现好的基金经理中,只有1位基金经理管理的3只基金能够在历次风格转换前后都排名在前40%。说明基金和基金经理没有风格择时能力。如果根据市

更新时间:2025-01-09 10:40

股票市场数学:算法交易的基本概念

为什么需要学习股票市场的数学?

  • 人们常常会思考为什么需要理解和学习股票市场的数学。
  • 学习股票市场数学的必要性是什么?
  • 我在哪里可以学习股票市场中数学的应用?
  • 股票市场数学的基础是什么?
  • 在学习股票市场数学时,应该关注哪些概念?

许多人希望从数学角度学习算法交易。各种数学概念、统计学和计量经济学在股票市场交易中发挥着重要作用,为你的股票交易提供优势。

以下是我们在本文中涵盖的有关股票市场数学的完整列表:

  • 股票市场数学是什么?
  • 算法交易概述
  • 算法交易为什么需要数学?
  • 数学在交易中何时以及如何流行起来:历史之旅
  • 股票市场的数学概念
    • 描述

更新时间:2025-01-08 11:35

筹码理论的探索-筹码分布计算的实现

https://bigquant.com/codesharev2/42c80795-96ba-461e-8a80-e7f69b749e5b

\

更新时间:2024-06-11 02:19

情绪周期中涨跌停数、最高板数等代码编写

问题

35th Meetup提到的情绪周期中最高板数,涨停家数,跌停家数,昨日涨停今日表现(赚钱效应)等具体代码的编写。

\

视频

https://www.bilibili.com/video/BV1nT4y1q7Ut/

策略源码

[https://bigquant.com/experimentshare/224aa4076333436ea5a570694376631a](https://bigquant.com/experimentshare/224aa40763334

更新时间:2024-06-07 10:55

44th Meetup

\

更新时间:2024-06-07 10:55

36th Meetup

\

更新时间:2024-06-07 10:55

算法那么多,如何给策略选择最佳的算法?

\

作者

徐耀杰(woshisilvio)

常见算法优劣比较

算法没有最好,只有更好。 这个问题的答案取决于许多因素,例如股票市场的条件,数据集的质量和特征工程的有效等。接下来,我们来看看这些算法的优势和劣势:

  1. 神经网络:适用于复杂的非线性问题,可以有效地捕捉市场的非线性特征和复杂关系。
  2. 决策树:适用于数据量较小、特征维度较少的情况,可以很好地解释模型的决策过程。
  3. 随机森林:适用于处理高维度、复杂数据集,具有很好的鲁棒性和准确性。
  4. 支持向量机:适用于数据量较小、特征维度较高的情况,可以有效地处理非线性和线性可分问题。

正常情况下,在处理少量的股票量

更新时间:2024-06-07 10:55

多因子选股如何筛选有效因子

问题

多因子选股如何筛选有效因子

回答

参考研报:

  1. 多因子系列之一:华泰多因子模型体系初探-华泰证券-20160921
  2. 多因子系列之二:华泰单因子测试之估值类因子-华泰证券-20160929

因子分析参考:

  1. [因子分析](https://bigquant.com/wiki/doc/yinz

更新时间:2024-06-07 10:55

标注模块+中性化

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-06-07 10:55

51st MEETUP

PPT

/wiki/static/upload/1f/1fdcde6d-6311-49fc-a1ad-e533c840cf97.pdf

视频

https://www.bilibili.com/video/BV1zc411V7EW/?spm_id_from=333.999.0.0

\

更新时间:2024-06-07 10:55

41st Meetup

\

更新时间:2024-06-07 10:55

一阳穿多线的因子描述

策略案例


https://bigquant.com/experimentshare/44df09d365584c4b9874df99f5f69c4f

\

更新时间:2024-06-07 10:55

2021-AI量化Meetup导览

{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}{w:100}导语

2020年我们开展了近半年的Meetup,共11场Meetup活动,90个问题,7场专题,持续地为大家服务和提供新鲜的灵感。2021年,Me

更新时间:2024-06-07 10:55

机器学习应用于底部反转策略的表现

问题

《机器学习应用于底部反转策略的表现》

视频

https://www.bilibili.com/video/BV1Jd4y1g7Gi/?vd_source=ecd29bbd04cbefdfa426167c55241973&t=1.3

\

策略源码

详见上述链接

更新时间:2024-06-07 10:55

45th Meetup

\

更新时间:2024-06-07 10:55

波动率公式及使用技巧

波动率(Volatility)是金融市场中用于衡量资产价格随时间变化的程度。波动率越高,表示资产价格的变动幅度越大,风险也越高。在股票市场中,波动率通常以历史波动率(基于过去的价格变动)或隐含波动率(基于期权定价)来衡量。

BigQuant金融市场历史数据因子平台以及AI量化策略编写平台(PC端),可以验证波动率指标因子组成的量化策略。

![](/wiki/api/attachments.redirect

更新时间:2024-06-07 10:48

LSTM大盘择时+Stockranker选股

请参考新版的大盘择时

机器学习+择时+跟踪止损+技术分析

策略案例

https://bigquant.com/experimentshare/a5ed3eddf32f4e4dad4811a1acc257f0

\

更新时间:2024-05-24 10:28

【方正金工】成交量激增时刻蕴含的alpha信息——多因子选股系列研究之一

更新

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU



本文来自方正证券研究所于2022年4月12日发布的报告《成交量激增时刻蕴含的alpha信息——多因子选股系列研究之一》,欲了解具体内容,请阅读报告原文,分析师:曹春晓 S1220522030005。

摘要

在股票市场中,成交量的边际变化隐含着非常重要的信息,特别是在技术分析领域,成交量被认为是股票市场的原动力。俗语“量在价先”深刻的反

更新时间:2024-05-20 07:02

XGBoost的价值选股策略

文献回顾

回顾价值策略

价值策略通俗地讲就是买入便宜股票,卖出昂贵股票,思想非常简单和直观。但是实际操作上这非常困难,因为我们没办法直接观察股票的真实价值。投资者可以从不同的视角采用不同的指标来估计股票内在价值。在股票市场中,最传统的方法就是通过会计报表的各个条目得到企业估值,我们可以从资产负债表得到市净率,从利润表得到资产收益率,从现金流量表得到现金流比率。Ma和Smith(2014)在《Sorting through the trash》中提到通过市净率、预测下期资产收益率和股价/现金流这三个指标合成一个综合的“价值”因子,可以显著提升策略表现(MA采取了三个因子Z得

更新时间:2024-05-20 02:09

用StockRanker算法实现A股股票选股

旧版声明

本文为旧版实现,仅供学习参考。

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

策略案例

https://bigquant.com/experimentshare/72d5601550164505aad979f7265f8fec

\

更新时间:2024-05-20 00:50

lstm+cnn+A股去ST+大盘风控

更新

本文内容对应旧版平台与旧版资源,其内容不再适合最新版平台,请查看新版平台的使用说明

新版量化开发IDE(AIStudio):

https://bigquant.com/wiki/doc/aistudio-aiide-NzAjgKapzW

新版模版策略:

https://bigquant.com/wiki/doc/demos-ecdRvuM1TU

新版数据平

更新时间:2024-05-17 03:48

StockRanker多因子选股策略

StockRanker多因子选股策略

https://bigquant.com/codesharev2/5d97cb4f-526b-45be-9527-5a6927873337

\

更新时间:2024-05-17 02:33

如何结合欧奈尔的RPS指标,开发AI量化策略?

若想在AIStudio3.0.0种复现这个策略, 请空降:

https://bigquant.com/wiki/doc/rpsai-lgPnmWzLkq

问题

如何结合欧奈尔的RPS指标,开发AI量化策略?

讲解


{w:100}{w:100}{w:100}{w:100}{w:100}


1988年,欧奈尔将他的投资

更新时间:2024-05-17 01:13

事件驱动策略(基于业绩快报)

事件驱动

事件驱动(Event Driven)属于量化投资之中的一个重要类别,涵盖投资机会广泛。广义上说,市场上任何发生的有可能与股票市场相关的新闻、事件、公告均有可能成为事件驱动的投资机会。 目前我国业界事件驱动策略中包括的常用重大事件有:业绩预告、业绩快报、分红送转、大股东增减持、高管增减持、定向增发、限售股解禁、股权激励、重组并购、ST摘和评级上调等,如下图所示。

可以看出,目前市场经过验证有效的事件已经不少,涵盖了影响股票价格

更新时间:2024-05-16 06:37

基于卷积神经网络的多因子预测

更新

本文内容已经过期,不再适合平台最新版本,请查看如下最新内容:

https://bigquant.com/wiki/doc/5z65lqo5y2356ev56we57up572r57uc55qe5asa5zug5a2q6ycj6ikh-3hXXZIwYtI

策略案例

[https://bigquant.com/experimentshare/86296263b27

更新时间:2024-05-16 06:36

分页第1页第2页第3页第4页
{link}